
1

Performance of several branch predictor

types and different RAS configurations

Advanced Computer Architecture

Simulation project

First semester, 2009/2010

Done by: Dua'a AL-Najdawi

Date: 20-1-2010

2

Design options

My research was about the performance of several branch predictor types and

different Return address stack (RAS) configurations, so I used a sim-outorder in

simple scalar according to my attend in the project.

It supported these predictor types:

 nottaken : always predict not taken

 taken : always predict taken

 perfect : perfect predictor

 bimod : bimodal predictor (BTB w/ 2 bit counters)

 2lev : 2-level adaptive predictor

 Comb : combination between the bimodal and 2-level adaptive predictor

I interested in bimodal predictor, 2-level predictor and the combination

between of them, also in my project I made different configurations for the RAS

size. Their default configurations and their commands to change their options are

seen below:

-bpred bimod # branch predictor type

{nottaken|taken|perfect|bimod|2lev|comb}

-bpred:bimod 2048 # bimodal predictor config (<table size>)

-bpred:2lev 1 1024 8 0 # 2-level predictor config (<l1size> <l2size> <hist_size>

<xor>)

-bpred:comb 1024 # combining predictor config (<meta_table_size>)

-bpred:ras 8 # return address stack size (0 for no return stack)

-bpred:btb 512 4 # BTB config (<num_sets> <associativity>)

Firstly I run a sim‐outorder with 20 million instruction fastforward and 50

million instruction max, by using this command:

-max:inst 50000000 -fastfwd 20000000

And I saved each output of each experiment in txt file for each workload

separately, using the below command .Also I accompanied it in CD:

 -redir:sim sim_output_file

3

Here are 8 experiments, separated it to two parts:

PART 1: Performance of several branch predictors

Experiment 1:
 Using the bimodal branch predictor with a table size of 256 and its output

saved in output2 txt file in the CD, using the following command:

–bpred bimod –bpred:bimod 256

Experiment 2:
 Using the 2-level predictor type with l1=1, l2=256 and its output saved in

output3 txt file in the CD:

-bpred 2lev –bpred:2lev 1 256 4 0

Experiment 3:
Change the predictor type to combining predictor with the same size, and

its output saved in output4 txt file in the CD:

-bpred comb –bpred:comb 256 –bpred:bimod 256 –bpred:2lev 1 256 4 0

PART 2: Different RAS configurations
Experiment 1:

Change the return address stack (RAS) size to 2 in bimodal predictor, and its

output saved in output8 in the CD:

-bpred bimod –bpred:bimod 256 –bpred:ras 2 –bpred:btb 64 2

Experiment 2:
Change the return address stack (RAS) size to 4 in bimodal predictor, and its

output saved in output5 in the CD:

-bpred bimod –bpred:bimod 256 –bpred:ras 4 –bpred:btb 64 2

4

Experiment 3:
Change the return address stack (RAS) size to 8 in bimodal predictor, and its

output saved in output2 txt file in the CD:

-bpred bimod –bpred:bimod 256 –bpred:ras 8 –bpred:btb 64 2

Experiment 4:

Change the return address stack (RAS) size to 16 in bimodal predictor, and

its output saved in output6 txt file in the CD:

-bpred bimod –bpred:bimod 256 –bpred:ras 16 –bpred:btb 64 2

Experiment 5:
Change the return address stack (RAS) size to 32in bimodal predictor, and

its output saved in output7 txt file in the CD:

-bpred bimod –bpred:bimod 256 –bpred:ras 32 –bpred:btb 64 2

Simulator

SimpleScalar v 3.0, an execution driven simulator that implements a very

detailed out‐of‐order issue superscalar processor with a two‐level memory system

and speculative execution support. It also has the characteristics to change the

branch predictor options, as we saw in the Experiments.

As we know the simple scalar has many simulators different with each other,

here I used sim-outorder which is called Detailed Performance simulator. It

generates timing statistics for a detailed out-of-order issue processor core with two-

level cache memory hierarchy and main memory, and here I interested in IPC and

branch predictor hit rate which is supported in sim-outorder.

Workload

There are 26 SPEC2000 Benchmarks 12 Integer and 14 Floating Point. I

pick 3 of them two floating point: equake , ammp and one integer: gcc.

Its binaries are for the PISA instruction sets, I included it with their inputs in

the CD.

5

Results:

PART 1: Performance of several branch predictors

I used different types of the branch prediction: bimodal prediction, 2-level

prediction, combination of the bimodal prediction and 2-level prediction. All have

the same size which is 256 (2-level prediction l1=1, l2=256).

The comparison between the different types of branch prediction was in IPC

and the branch direction prediction rate and their results are shown in Table 1 and

Table 2 respectively also are implemented in graph 1 and graph 2.

Branch

prediction type

Equake Ammp gcc

bimodal 1.2690 .4242 .8229
2-level 1.672 .4197 .7904
combination 1.2924 .4254 .8329

Table 1: IPC for different types of branch prediction

Graph 1: IPC for different types of branch prediction

1.269

0.4242

0.8229

1.672

0.4197

0.7904

1.2924

0.4254

0.8329

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

Equake Ammp gcc

bimodal

2-level

combination

6

Table 2: prediction hit rate to different types of branch prediction

Graph 2: prediction hit rate to different types of branch prediction

94.69%

97.54%

83.71%

89.36%

97.01%
98.11%

85.15%

76.00%

81.00%

86.00%

91.00%

96.00%

Equake Ammp gcc

bimodal

2-level

combination

 Equake Ammp gcc
bimodal 94,69% 97,54% 83,71%
2-level 89,36% 91,23% 78,05%
combination 97,01% 98,11% 85,15%

7

PART 2: Different RAS configurations

The Return Address Stack (RAS) Changes to different sizes: 2,4,8,16,32 (Of

course the size of RAS will be the power of 2). And the type of the branch

prediction is the bimodal branch prediction and its table size is 256.

The comparison between its different sizes in IPC and the branch address

prediction rate are shown in Table 3 and Table 4 respectively also is implemented

in graph 3 and graph 4.

 Equake Ammp gcc

RAS=2 1.2470 .4226 .8128

RAS=4 1.2623 .4235 .8199

RAS=8 1.2690 .4242 .8229

RAS=16 1.2690 .4242 .8231

RAS=32 1.2690 .4242 .8231
Table 3: IPC for different sizes of RAS

graph 3: IPC for different sizes of RAS

1.247 1.2623 1.269 1.269 1.269

0.4226 0.4235 0.4242 0.4242 0.4242

0.8128 0.8199 0.8229 0.8231 0.8231

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

RAS=2 RAS=4 RAS=8 RAS=16 RAS=32

Equake

Ammp

gcc

8

Table 4: prediction hit rate for different sizes of RAS

Graph 4: prediction hit rate for different sizes of RAS

79.91% 80.58% 80.85% 80.85% 80.85%

93.53% 93.87% 94.06% 94.06% 94.06%

66.96% 67.85% 68.24% 68.27% 68.27%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

RAS=2 RAS=4 RAS=8 RAS=16 RAS=32

Equake

Ammp

gcc

 Equake Ammp gcc

RAS=2 79,91% 93,53% 66,96%

RAS=4 80,58% 93,87% 67,85%

RAS=8 80,85% 94,06% 68,24%

RAS=16 80,85% 94,06% 68,27%

RAS=32 80,85% 94,06% 68,27%

9

6. Conclusion

We saw the performance of the bimodal predictor is better than the performance

of 2-level adapter predictor. When we combine between them the performance all

will be better, prediction hit rate and IPC increase.

When we increase the size of RAS (2, 4, 8) the IPC and the prediction rate

increase so all the performance will enhance. This result up to RAS=8, but after

that (RAS=16 or =32) almost the results will be the same so the best size of RAS is

8 which is used now in the superscalar processor.

10

7. References

1-Speculative Return Address Stack Management Revisited, HANS
VANDIERENDONCK and ANDR´E SEZNEC,Transactions on Architecture
and Code Optimization (TACO) , November 2008

2-Comparison of branch prediction schemes for superscalar processors ,ICEEC 2004 ,

Youssif, A.A. Ismail, N.A. Torkey, F.A.

3-http://bwrc.eecs.berkeley.edu/Classes/CS252/Projects/Reports/terry_chen.pdf

4-http://harryscode.blogspot.com/2008/10/installing-simplescalar.html

5-http://students.cse.tamu.edu/msahn/csce614/hw1.pdf

6-http://www.simplescalar.com/docs/simple_tutorial_v2.pdf

7-Arguments:http://students.cse.tamu.edu/msahn/csce614/spec2000args.tgz

8-Binaries:http://www.eecs.umich.edu/mirv/benchmarks/gcc2000.v3.tar.gz.

http://bwrc.eecs.berkeley.edu/Classes/CS252/Projects/Reports/terry_chen.pdf
http://harryscode.blogspot.com/2008/10/installing-simplescalar.html
http://students.cse.tamu.edu/msahn/csce614/hw1.pdf
http://www.simplescalar.com/docs/simple_tutorial_v2.pdf
http://students.cse.tamu.edu/msahn/csce614/spec2000args.tgz
http://www.eecs.umich.edu/mirv/benchmarks/gcc2000.v3.tar.gz

11

CD Contents:

o Report

o Simple Scalar V 3 simulator

o Simple Scalar tutorial and installation guide

o Workloads including:

 A-Arguments

 B-Binaries

o Tutorial of simple Scalar installations and run it with

different parameters

o Output of my simulation

