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Abstract 

The recent architectural trend of mutli-core and many core processing has dominated the world of 

commodity computing where such state of the art designs are found in the CPUs and GPUs of every 

modern computer. Moreover, general purpose computing on GPUs is taking advantage of already 

massively parallel, multithreaded processing cores to achieve orders of magnitude speed up over 

state of the art CPU counterparts. This simulation project explores architectural design space 

flexibility of GPUs and investigates which design choices affect peak performance in an attempt to 

give an insight for tomorrow’s designs. A workload of five non trivial non-graphical general purpose 

applications of scientific and financial nature is run on a detailed-cycle research simulator which 

runs CUDA kernels. Many design choices are explored and their performance impact is analyzed, the 

design options are limited to the streaming multiprocessor units in which the number of processing 

shader units, register count, shared memory size is studied. Furthermore, the number of threads per 

thread blocks run on a streaming multiprocessor and a thread scheduling option is also investigated.  

 

1. Report Organization 

This report starts with presenting a quick design abstract of modern NVIDIA GPUs based on the 

TESLA architecture, and then presents the baseline configuration of the GPU design to which all 

further design choices are compared, such design options are listed and elaborated on in section 2. 

The research Simulator GPGPU Sim is introduced in section 3. The workload set is introduced in 

section 4 where each application is fully explained, the section ends with a summary of the properties 

of each application. Section 5 provides the simulation results of the design choices studied and brief 

analysis is given of the cases in hand. Finally, the report concludes with an overall analysis. 

 

2. Simulation Options 

NVIDIA GPUs based on the current TESLA architecture offer multiple scalable Streaming 

Multiprocessors (SMs), each encompassing a group of processors (also called shaders, or shader 

processors). Each SM has its own shared memory block and a set of registers. Threads are issued in 

thread blocks and executed to completion without preemption by an entire SM. This simulation 

attempts to vary these parameters and investigate possible performance gains or losses. 

 

The baseline configuration of the GPU core used in this simulation consists of 28 streaming 

multiprocessors each encompassing 32 processing cores for a total of 896 cores with eight memory 

channels. Each SM has 16kb of shared memory and 16384 registers. This base configuration allows 

for up to 1024 threads in each thread block and for coarse-grained parallelism on the thread block 

level, with up to eight thread blocks per SM running concurrently (In contrast to the current NVIDIA 

TESLA GPU architecture where eight cores per SM are implemented, only up to 512 threads per 

thread block is allowed and coarse grained parallelism on the thread block level is prohibited by the 

CUDA model!). Additionally, no L1 or L2 caches are used! Table 2 summarizes the base 

configuration and presents the several design options explored. 
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Hardware Simulated Basic Configuration 
Different Configurations 

Simulated 

No. of Streaming Multiprocessors 28 - 

No. of processors per SM 32 8/16/32 

No. of threads in thread block 1024 512/1024/1536/2048 

No. of registers / SM 16384 4096/8192/16384/24576/32768 

Shared memory size (bytes)/ SM 16384 16384/24576/32768 

No. of concurrent thread Blocks 8 4/8/12/16 

 

Table 1: Basic Configuration and Simulations Parameters Explored 

 

In this simulation project, one architectural perspective which was explored was the ratio in between 

the thread warp size issued to the number of the general shader processor count in each SM. Current 

GPU designs from NVIDIA issue a warp size of 32 threads onto eight shader cores at a quadrupled 

rate, thus executing a warp per cycle. I have further explored the two possibilities of doubling the 

number of cores and scaling their numbers to match that of the warp size! Furthermore, based on the 

previous results, another option of selecting a warp size of 16 instead of 32 has been simulated while 

simulating higher and lower options was limited by the simulator capabilities.  

 

Moreover, varying the number of registers and the total size of the shared memory per SM was 

investigated. In addition, increasing the thread count per thread block was further studied! To 

elaborate more, further simulations were conducted to analyze speed up gains when increasing the 

thread count and scaling the SM hardware resources accordingly! 

 

A final simulation aspect was to analyze the variation of the maximum allowed number of concurrent 

thread blocks to be executed by a single SM.  

 

3. Simulator 

GPU Simulators for general purpose computing are very scarce and few were developed within the 

past couple of years due to the novelty of the domain, moreover, most implementations are not yet 

mature and many are only in their beta stages, most notably to mention are: Barra, Ocelot and GPGPU 

SIM [3]. For the purpose of this simulation project, the GPGPU SIM simulator (which is developed at 

the University of British Columbia) was chosen for it provides detailed statistical results and allows 

for much wider range of design and simulation options in comparison with the other mentioned 

simulators. GPGPU SIM is a detailed cycle performance simulator for many core architectures, 

specifically GPUs running CUDA code, this means that it provides a cycle level model for every part 

of the microarchitecture in contrast to cycle accurate simulators, that is it does not match the hardware 

100% but provides very close estimates [4] 

 

GPGPU SIM offers two types of simulation: functional and performance. In functional simulation, the 

architecture, the instruction set and the overall accuracy is simulated. On the other hand, performance 

simulation deals with the timing model; that is GPGPU SIM reports the number of cycles spent by 

running the CUDA kernels, it covers shader cores, caches, interconnect network, memory controllers 

and graphics DRAM. 
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4. Workload 

No official benchmark suite has yet been developed for GPU general purpose computing simulators. 

Researchers tend to either use some of the complex CUDA programs provided by the NVIDIA SDK 

[2] or compile their own workload which often varies in between general purpose computing 

domains; financial, graphical as well as scientific domains: mathematical, biological...etc. In this 

simulation project and for the lack of an official comparison baseline, I will use a subset of programs 

simulated and used by Bakhoda et al [1] in their work presented at ISPASS09. The workload set 

consists of:  

 

Graph Algorithm: Breadth-First Search (BFS): an application which performs breadth-

first search on a graph. Each node in the graph is processed by a different thread; therefore the 

amount of parallelism in this application scales with the size of the input graph. BFS suffers 

from performance loss due to heavy global memory traffic and branch divergence. The graph 

file provided describes a random graph with 65,536 nodes with 6 edges per node on average. 

 

3D Laplace Solver (LPS): a highly parallel finance application which uses shared memory 

and ensures coalesced global memory accesses. It runs for one iteration on a 100x100x100 

grid. 

 

MUMmerGPU (MUM): a parallel pairwise local sequence alignment program that matches 

query strings consisting of standard DNA nucleotides (A,C,T,G) to a reference string for 

purposes such as genotyping, genome resequencing, and metagenomics. The reference string 

is stored as a suffix tree in texture memory and has been arranged to exploit the texture 

cache’s optimization for 2D locality. Since each thread performs its own query, the nature of 

the search algorithm makes performance also susceptible to branch divergence.  

 

Neural Network (NN): Neural network uses a convolutional neural network to recognize 

handwritten digits. Pre-determined neuron weights are loaded into global memory along with 

the input digits. This version is modified to allow for the recognition of multiple digits at once 

to increase parallelism. Nevertheless, the last two kernels utilize blocks of only a single thread 

each, which results in severe underutilization of the shader core pipelines. Recognition of 28 

digits from the Modified National Institute of Standards Technology database of handwritten 

digits is simulated. 

 

Ray Tracing (RAY): Ray-tracing is a method of rendering graphics with near photo-realism. 

In this implementation, each pixel rendered corresponds to a scalar thread in CUDA. Up to 5 

levels of reflections and shadows are taken into account, so thread behavior depends on what 

object the ray hits (if it hits any at all), making the kernel susceptible to branch divergence. A 

rendering of a 256x256 image is simulated 

 

Table 2 summarizes the configuration and characteristics of the above mentioned workloads: 
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BFS 128,1,1 512,1,1 4 65563 Y N N N 

LPS 4,25,1  6 12800 Y N N Y 

NN 6,28,1 

50,28,1 

100,28,1 

10,28,1 

13,13,1 

5,5,1 

1,1,1 

1,1,1 

5 

8 

8 

8 

28392 

35000 

2800 

280 

N N N N 

N 

N 

N 

MUM 782,1,1 64,1,1 3 50000 N N 2D N 

RAY 16,32,1 16,8,1 3 65563 N Y N Y 

 

Table 2: Workload Properties 

5. Simulation Results 

Since there are 896 

processing cores in the base 

configuration, the maximum 

theoretical attainable IPC is 

therefore 896. Figure 1 

shows the practical IPC 

values for the benchmark 

workloads used! The design 

options and speed ups are 

compared to these practical 

values.   

         Figure 1 

Figure 2 displays the results of the first design option to be simulated which was the relationship in 

between the warp size (Warp in CUDA terminology is the a unit of 32 threads scheduled to run 

concurrently in an SM) and 

the number of processor 

cores on which it is to be 

executed, the number of 

processors was selected to 

be ¼, ½ and equal to the 

warp size, or in other 

words, simulating the speed 

up gains when scaling the 

number of processing units 

in an SM. Current GPU 

hardware limits the number 

of processors per SM to 

eight due to high design 

and implementation costs. 

                  Figure 2 

 

A speed up of two and four was expected when the number of processors was doubled and 

quadrupled, however, this was not the case for all the workload benchmarks since not all applications 
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are inherently and completely parallel! For example, the nature of the BFS program allows for branch 

divergence and thus threads are executed sequentially! The NN application has certain sequential code 

which cannot be parallelized! 

 

The second option to be 

explored was varying the 

number of registers per 

streaming multiprocessor. 

Figure 3 shows that no 

substantial speed up gains 

were realized except for the 

RAY application and only 

in the initial jump from 

register file size of 4096 to 

8192 bytes. This might be 

due that this increase in 

physical registers size 

surpasses the resource 

amount needed by the applications.             Figure 3 

 

In addition, the size of the shared memory in between all threads issued to the same SM unit was 

investigated! Memory sizes of 50%, 125% and 150% was put into test. No speed up gains were 

observed at all! Such a result was expected for the NN, MUM and RAY workloads for they do not 

utilize this memory! Interestingly however, that the LPS and BSF benchmarks showed no 

improvement though they extensively use this shared memory. This might also due to the fact that the 

size amount of shared memory is well beyond applications needs! Refer to Figure 4. 

 

Therefore, based on the abovementioned results and observations, another set of tests was conducted 

in which the number of 

threads in a thread block 

which is scheduled to run in 

an SM was varied from 512 

threads to 2048 threads and 

to explore if the extra 

resources of shared memory 

and registers are exploited!  

Figure 5 shows the recorded 

results. No speed up gains 

were recorded however. A 

feasible explanation in this 

case is that performance is 

being limited due to global 

memory access and interconnect congestions. [1]          Figure 4 

 

A final simulation conducted was varying the number of concurrent thread blocks allowed to run in 

one SM. Figure 6 shows that the NN application shows increasing gains as the level of thread block 

level parallelism is raised. In addition, the MUM application only shows one step of improvement 
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when the number of concurrent TB is doubled from 4 to 8 but no further performance is                 

gained when additional concurrent TBs are allowed to execute. Referring back to table 2, it is shown 

that this increase is due to the fact that these benchmarks are by design written to support being 

scheduled in a concurrent fashion with up to eight TBs, meanwhile the others are limited to three TBs. 

 

 

 

 

 

 

 

 

 

 

    Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 

 

6. Discussion and Conclusions 

Several design space options have been explored in this simulation project in relation to the 

parameters of the streaming multiprocessor. It has been found that increasing the numbers of shader 

processors per SM does not necessarly unleash speed ups that are linearly proportional to the increase 

in processor count even when the number of threads issued per thread block is also raised. This is due 

to the fact that not all workloads are inherently and completely parallel where certain segments of the 

kernel are to run in a sequential fashion. Moreover, applications with high control flow instructions 

with high probability of warp divergence might further hinder performance gains depending on 

divergence handling policy,  that is when divergent threads are executed in sequential order and not 

taking advantage of the parallel design, no speed up gains are expected and use is made of the scaled 

shader processor count.  
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When the number of registers per SM and size of the shared memory is increased, most simulated 

programs performance remained unchanged. This result was expected for applications which do not 

make use of the shared memory, minor performance gains were recorded for some applications when 

register count was increased, others remained unchanged. A possible explanation was that increase of 

resources surpassed the needs of the workload. Further studies on resource extensive and greedy 

applications are to be analyzed in order to draw a firm conclusion. 

 

Increasing the number of threads per thread block was expected to further enhance performance, yet 

no gains were observed, scaling shared memory and register count with thread number increase had 

no effect. Careful analysis suggested that though the results did not match our expectations it was due 

to global memory access congestion and DRAM channel controller stalls. Memory was the bottleneck 

in this case.  

 

Scheduling thread blocks to execute on each streaming multiprocessor unit in a coarse grained fashion 

was dependent on the nature of the workload; that is the number of independent thread blocks found 

in each application, the higher the independency the higher the gains. This results was consistent with 

the results obtained by Bachoda et al [1] 
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