

GPGPU Workload Analysis

Based on CUDA Kernels

Ashraf E. Suyyagh

2

GPGPU Workload Analysis Based on CUDA Kernels

Ashraf Suyyagh

mrsuyyagh@gmail.com

Abstract

The recent architectural trend of mutli-core and many core processing has dominated the world of

commodity computing where such state of the art designs are found in the CPUs and GPUs of every

modern computer. Moreover, general purpose computing on GPUs is taking advantage of already

massively parallel, multithreaded processing cores to achieve orders of magnitude speed up over

state of the art CPU counterparts. This simulation project explores architectural design space

flexibility of GPUs and investigates which design choices affect peak performance in an attempt to

give an insight for tomorrow’s designs. A workload of five non trivial non-graphical general purpose

applications of scientific and financial nature is run on a detailed-cycle research simulator which

runs CUDA kernels. Many design choices are explored and their performance impact is analyzed, the

design options are limited to the streaming multiprocessor units in which the number of processing

shader units, register count, shared memory size is studied. Furthermore, the number of threads per

thread blocks run on a streaming multiprocessor and a thread scheduling option is also investigated.

1. Report Organization

This report starts with presenting a quick design abstract of modern NVIDIA GPUs based on the

TESLA architecture, and then presents the baseline configuration of the GPU design to which all

further design choices are compared, such design options are listed and elaborated on in section 2.

The research Simulator GPGPU Sim is introduced in section 3. The workload set is introduced in

section 4 where each application is fully explained, the section ends with a summary of the properties

of each application. Section 5 provides the simulation results of the design choices studied and brief

analysis is given of the cases in hand. Finally, the report concludes with an overall analysis.

2. Simulation Options

NVIDIA GPUs based on the current TESLA architecture offer multiple scalable Streaming

Multiprocessors (SMs), each encompassing a group of processors (also called shaders, or shader

processors). Each SM has its own shared memory block and a set of registers. Threads are issued in

thread blocks and executed to completion without preemption by an entire SM. This simulation

attempts to vary these parameters and investigate possible performance gains or losses.

The baseline configuration of the GPU core used in this simulation consists of 28 streaming

multiprocessors each encompassing 32 processing cores for a total of 896 cores with eight memory

channels. Each SM has 16kb of shared memory and 16384 registers. This base configuration allows

for up to 1024 threads in each thread block and for coarse-grained parallelism on the thread block

level, with up to eight thread blocks per SM running concurrently (In contrast to the current NVIDIA

TESLA GPU architecture where eight cores per SM are implemented, only up to 512 threads per

thread block is allowed and coarse grained parallelism on the thread block level is prohibited by the

CUDA model!). Additionally, no L1 or L2 caches are used! Table 2 summarizes the base

configuration and presents the several design options explored.

mailto:mrsuyyagh@gmail.com

3

Hardware Simulated Basic Configuration
Different Configurations

Simulated

No. of Streaming Multiprocessors 28 -

No. of processors per SM 32 8/16/32

No. of threads in thread block 1024 512/1024/1536/2048

No. of registers / SM 16384 4096/8192/16384/24576/32768

Shared memory size (bytes)/ SM 16384 16384/24576/32768

No. of concurrent thread Blocks 8 4/8/12/16

Table 1: Basic Configuration and Simulations Parameters Explored

In this simulation project, one architectural perspective which was explored was the ratio in between

the thread warp size issued to the number of the general shader processor count in each SM. Current

GPU designs from NVIDIA issue a warp size of 32 threads onto eight shader cores at a quadrupled

rate, thus executing a warp per cycle. I have further explored the two possibilities of doubling the

number of cores and scaling their numbers to match that of the warp size! Furthermore, based on the

previous results, another option of selecting a warp size of 16 instead of 32 has been simulated while

simulating higher and lower options was limited by the simulator capabilities.

Moreover, varying the number of registers and the total size of the shared memory per SM was

investigated. In addition, increasing the thread count per thread block was further studied! To

elaborate more, further simulations were conducted to analyze speed up gains when increasing the

thread count and scaling the SM hardware resources accordingly!

A final simulation aspect was to analyze the variation of the maximum allowed number of concurrent

thread blocks to be executed by a single SM.

3. Simulator

GPU Simulators for general purpose computing are very scarce and few were developed within the

past couple of years due to the novelty of the domain, moreover, most implementations are not yet

mature and many are only in their beta stages, most notably to mention are: Barra, Ocelot and GPGPU

SIM [3]. For the purpose of this simulation project, the GPGPU SIM simulator (which is developed at

the University of British Columbia) was chosen for it provides detailed statistical results and allows

for much wider range of design and simulation options in comparison with the other mentioned

simulators. GPGPU SIM is a detailed cycle performance simulator for many core architectures,

specifically GPUs running CUDA code, this means that it provides a cycle level model for every part

of the microarchitecture in contrast to cycle accurate simulators, that is it does not match the hardware

100% but provides very close estimates [4]

GPGPU SIM offers two types of simulation: functional and performance. In functional simulation, the

architecture, the instruction set and the overall accuracy is simulated. On the other hand, performance

simulation deals with the timing model; that is GPGPU SIM reports the number of cycles spent by

running the CUDA kernels, it covers shader cores, caches, interconnect network, memory controllers

and graphics DRAM.

4

4. Workload

No official benchmark suite has yet been developed for GPU general purpose computing simulators.

Researchers tend to either use some of the complex CUDA programs provided by the NVIDIA SDK

[2] or compile their own workload which often varies in between general purpose computing

domains; financial, graphical as well as scientific domains: mathematical, biological...etc. In this

simulation project and for the lack of an official comparison baseline, I will use a subset of programs

simulated and used by Bakhoda et al [1] in their work presented at ISPASS09. The workload set

consists of:

Graph Algorithm: Breadth-First Search (BFS): an application which performs breadth-

first search on a graph. Each node in the graph is processed by a different thread; therefore the

amount of parallelism in this application scales with the size of the input graph. BFS suffers

from performance loss due to heavy global memory traffic and branch divergence. The graph

file provided describes a random graph with 65,536 nodes with 6 edges per node on average.

3D Laplace Solver (LPS): a highly parallel finance application which uses shared memory

and ensures coalesced global memory accesses. It runs for one iteration on a 100x100x100

grid.

MUMmerGPU (MUM): a parallel pairwise local sequence alignment program that matches

query strings consisting of standard DNA nucleotides (A,C,T,G) to a reference string for

purposes such as genotyping, genome resequencing, and metagenomics. The reference string

is stored as a suffix tree in texture memory and has been arranged to exploit the texture

cache’s optimization for 2D locality. Since each thread performs its own query, the nature of

the search algorithm makes performance also susceptible to branch divergence.

Neural Network (NN): Neural network uses a convolutional neural network to recognize

handwritten digits. Pre-determined neuron weights are loaded into global memory along with

the input digits. This version is modified to allow for the recognition of multiple digits at once

to increase parallelism. Nevertheless, the last two kernels utilize blocks of only a single thread

each, which results in severe underutilization of the shader core pipelines. Recognition of 28

digits from the Modified National Institute of Standards Technology database of handwritten

digits is simulated.

Ray Tracing (RAY): Ray-tracing is a method of rendering graphics with near photo-realism.

In this implementation, each pixel rendered corresponds to a scalar thread in CUDA. Up to 5

levels of reflections and shadows are taken into account, so thread behavior depends on what

object the ray hits (if it hits any at all), making the kernel susceptible to branch divergence. A

rendering of a 256x256 image is simulated

Table 2 summarizes the configuration and characteristics of the above mentioned workloads:

5

B
en

ch
m

a
rk

G
ri

d

D
im

en
si

o
n

T
h

re
a

d

B
lo

ck

D
im

en
si

o
n

s

C
o

n
cu

rr
e
n

t

T
h

re
a

d

B
lo

ck
s/

S
M

T
o

ta
l

T
h

re
a

d
s

S
h

a
re

d

M
em

o
ry

C
o

n
st

a
n

t

M
em

o
ry

T
ex

tu
re

M
em

o
ry

B
a

rr
ie

rs

BFS 128,1,1 512,1,1 4 65563 Y N N N

LPS 4,25,1 6 12800 Y N N Y

NN 6,28,1

50,28,1

100,28,1

10,28,1

13,13,1

5,5,1

1,1,1

1,1,1

5

8

8

8

28392

35000

2800

280

N N N N

N

N

N

MUM 782,1,1 64,1,1 3 50000 N N 2D N

RAY 16,32,1 16,8,1 3 65563 N Y N Y

Table 2: Workload Properties

5. Simulation Results

Since there are 896

processing cores in the base

configuration, the maximum

theoretical attainable IPC is

therefore 896. Figure 1

shows the practical IPC

values for the benchmark

workloads used! The design

options and speed ups are

compared to these practical

values.

 Figure 1

Figure 2 displays the results of the first design option to be simulated which was the relationship in

between the warp size (Warp in CUDA terminology is the a unit of 32 threads scheduled to run

concurrently in an SM) and

the number of processor

cores on which it is to be

executed, the number of

processors was selected to

be ¼, ½ and equal to the

warp size, or in other

words, simulating the speed

up gains when scaling the

number of processing units

in an SM. Current GPU

hardware limits the number

of processors per SM to

eight due to high design

and implementation costs.

 Figure 2

A speed up of two and four was expected when the number of processors was doubled and

quadrupled, however, this was not the case for all the workload benchmarks since not all applications

6

are inherently and completely parallel! For example, the nature of the BFS program allows for branch

divergence and thus threads are executed sequentially! The NN application has certain sequential code

which cannot be parallelized!

The second option to be

explored was varying the

number of registers per

streaming multiprocessor.

Figure 3 shows that no

substantial speed up gains

were realized except for the

RAY application and only

in the initial jump from

register file size of 4096 to

8192 bytes. This might be

due that this increase in

physical registers size

surpasses the resource

amount needed by the applications. Figure 3

In addition, the size of the shared memory in between all threads issued to the same SM unit was

investigated! Memory sizes of 50%, 125% and 150% was put into test. No speed up gains were

observed at all! Such a result was expected for the NN, MUM and RAY workloads for they do not

utilize this memory! Interestingly however, that the LPS and BSF benchmarks showed no

improvement though they extensively use this shared memory. This might also due to the fact that the

size amount of shared memory is well beyond applications needs! Refer to Figure 4.

Therefore, based on the abovementioned results and observations, another set of tests was conducted

in which the number of

threads in a thread block

which is scheduled to run in

an SM was varied from 512

threads to 2048 threads and

to explore if the extra

resources of shared memory

and registers are exploited!

Figure 5 shows the recorded

results. No speed up gains

were recorded however. A

feasible explanation in this

case is that performance is

being limited due to global

memory access and interconnect congestions. [1] Figure 4

A final simulation conducted was varying the number of concurrent thread blocks allowed to run in

one SM. Figure 6 shows that the NN application shows increasing gains as the level of thread block

level parallelism is raised. In addition, the MUM application only shows one step of improvement

7

when the number of concurrent TB is doubled from 4 to 8 but no further performance is

gained when additional concurrent TBs are allowed to execute. Referring back to table 2, it is shown

that this increase is due to the fact that these benchmarks are by design written to support being

scheduled in a concurrent fashion with up to eight TBs, meanwhile the others are limited to three TBs.

 Figure 5

Figure 6

6. Discussion and Conclusions

Several design space options have been explored in this simulation project in relation to the

parameters of the streaming multiprocessor. It has been found that increasing the numbers of shader

processors per SM does not necessarly unleash speed ups that are linearly proportional to the increase

in processor count even when the number of threads issued per thread block is also raised. This is due

to the fact that not all workloads are inherently and completely parallel where certain segments of the

kernel are to run in a sequential fashion. Moreover, applications with high control flow instructions

with high probability of warp divergence might further hinder performance gains depending on

divergence handling policy, that is when divergent threads are executed in sequential order and not

taking advantage of the parallel design, no speed up gains are expected and use is made of the scaled

shader processor count.

8

When the number of registers per SM and size of the shared memory is increased, most simulated

programs performance remained unchanged. This result was expected for applications which do not

make use of the shared memory, minor performance gains were recorded for some applications when

register count was increased, others remained unchanged. A possible explanation was that increase of

resources surpassed the needs of the workload. Further studies on resource extensive and greedy

applications are to be analyzed in order to draw a firm conclusion.

Increasing the number of threads per thread block was expected to further enhance performance, yet

no gains were observed, scaling shared memory and register count with thread number increase had

no effect. Careful analysis suggested that though the results did not match our expectations it was due

to global memory access congestion and DRAM channel controller stalls. Memory was the bottleneck

in this case.

Scheduling thread blocks to execute on each streaming multiprocessor unit in a coarse grained fashion

was dependent on the nature of the workload; that is the number of independent thread blocks found

in each application, the higher the independency the higher the gains. This results was consistent with

the results obtained by Bachoda et al [1]

References

[1] A. Bakhoda, G. Yuan, W. Fung, H. Wong and T. Aamodt, “Analyzing CUDA Workloads

Using a Detailed GPU Simulator” IEEE International Symposium on Performance Analysis

of Systems and Software, Boston, Massachusetts, 2009

[2] NVIDIA CUDA Website: www.nvidia.com/cuda

[3] GPGPU SIM website: http://www.ece.ubc.ca/~aamodt/gpgpu-sim/

[4] A. Bakhoda, W. Fung, H. Wong and T. Aamodt, ‘Tutorial on GPGPU-Sim: A Performance

Simulator for Massively Multithreaded Processor Research”, The 42nd Annual IEEE/ACM

International Symposium on Microarchitecture, NY, December 2009

http://www.nvidia.com/cuda
http://www.ece.ubc.ca/~aamodt/gpgpu-sim/

