GPGPU WORKLOAD ANALYSIS BASED ON CUDA KERNELS

Ashraf E. Suyyagh

Outline

- Design Options Simulated
- Simulator
- Workload
- Results
- Conclusions

Design Options

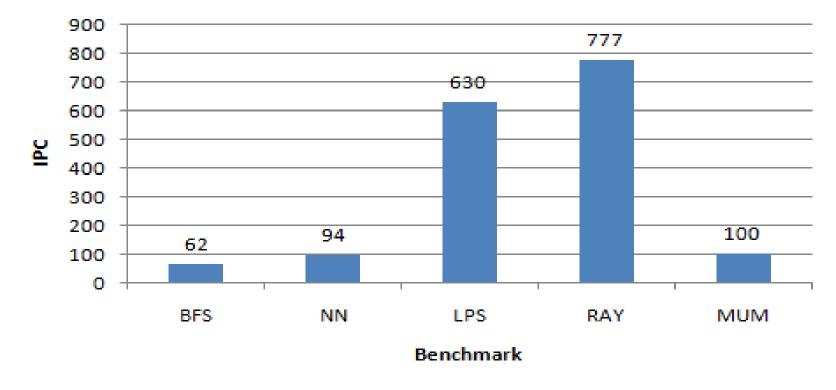
- A base configuration similar to contemporary high end GPU designs was chosen.
- Design parameters either were related to architectural design aspects, ratio of processors/warp size, No. of registers and size of shared memory per SM.
- Other parameters related to No. of threads per thread block, exploring Thread Block coarse grained level parallelism.

Hardware Simulated	Basic Configuration	Different Configurations Simulated		
No. of Streaming Multiprocessors	28	-		
No. of processors per SM	32	8/16/32		
No. of threads in thread block	1024	512/1024/1536/2048		
No. of registers / SM	16384	4096/8192/16384/24576/32768		
Shared memory size (bytes)/ SM	16384	16384/24576/32768		
No. of concurrent thread Blocks	8	4/8/12/16		

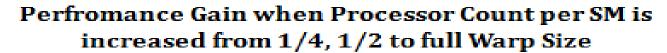
Simulator

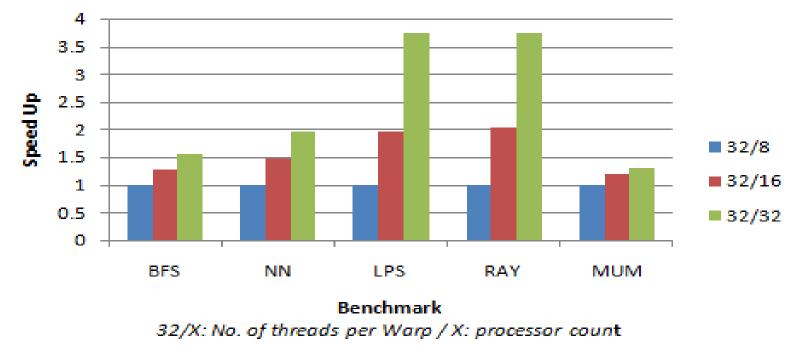
- Few GPU Simulators available: Barra, Ocelot, GPGPU Sim
- GPGPU Sim provides detailed statistical results and allows for much wider range of design and simulation options
- Offers Functional and Performance Simulation Options

Workload

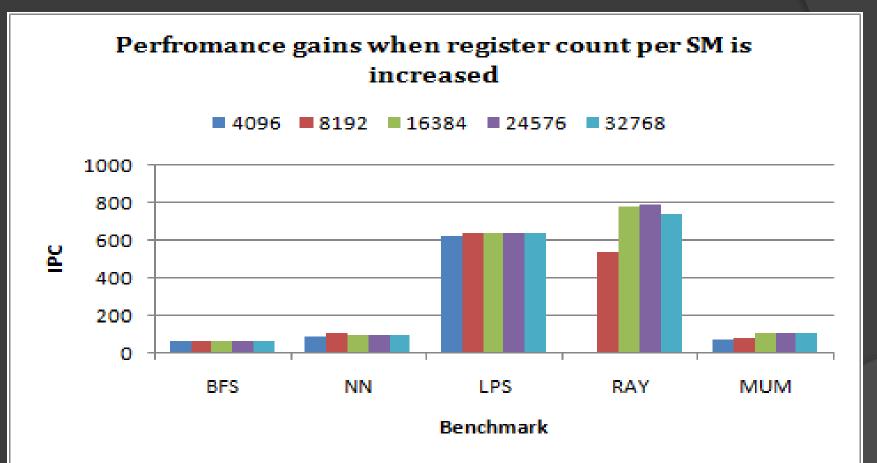

- No official benchmark suite has yet been developed for general purpose computing on GPUs
- Researchers use some of the highly complex kernels provided by the NVIDIA CUDA SDK
- Some compile their own sets of general purpose applications
- This simulation used a subset of the set used by Bakhoda et al in their simulation work!

Workload II - Properties

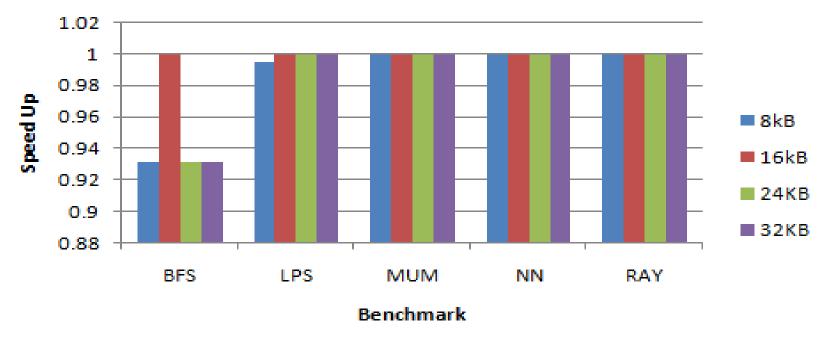

Benchmark	Grid Dimension	Thread Block Dimensions	Concurrent Thread Blocks/SM	Total Threads	Shared Memory	Constant Memory	Texture Memory	Barriers
BFS	128,1,1	512,1,1	4	65563	Y	Ν	Ν	N
LPS	4,25,1		6	12800	Y	Ν	Ν	Y
NN	6,28,1	13,13,1	5	28392	N	Ν	Ν	N
	50,28,1	5,5,1	8	35000				Ν
	100,28,1	1,1,1	8	2800				Ν
	10,28,1	1,1,1	8	280				Ν
MUM	782,1,1	64,1,1	3	50000	Ν	N	2D	Ν
RAY	16,32,1	16,8,1	3	65563	N	Y	N	Y


Results – Base Configuration

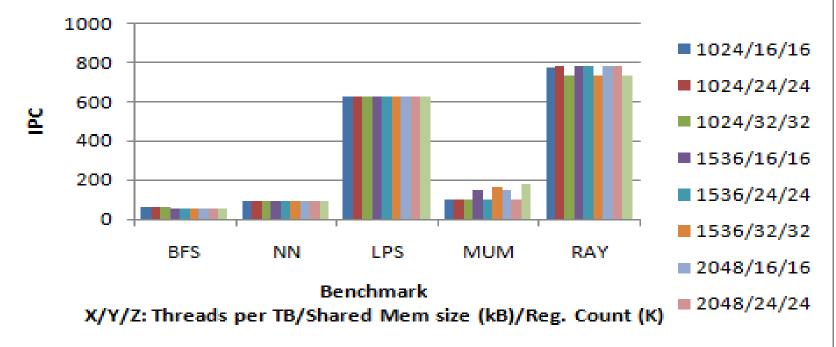
Practical Attainable IPC of Base Configuration



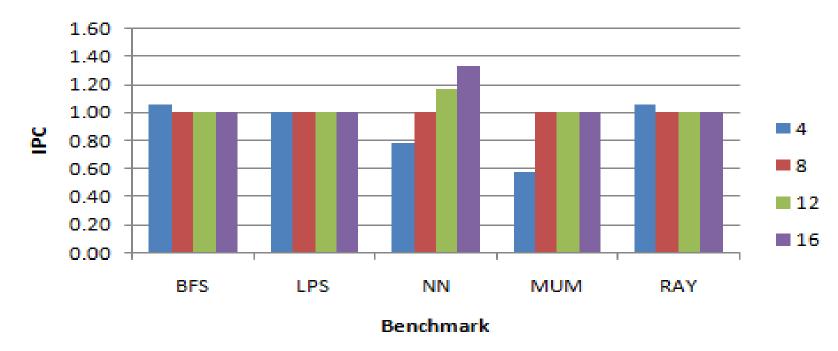
Results II



Results III


Results IV

Performance Gains when size of the Shared Memory is explored


Results V

Performance gains when no. threads per TB is increased and resources scaled

Results VI

Performance gains when No. of concurrent TB is varied

Conclusions

- Increasing No. of shader cores doesn't necessarily scale performance linearly → No completely parallel programs, branch divergence
- Increasing shared memory size and register count doesn't scale performance when it surpasses the amount needed by applications
- Increasing No. of threads though expected to enhance performance – limited by global memory access and interconnect congestion
- Thread Block Coarse grained level of parallelism is limited by the amount of independent thread blocks in the kernel!

Thank You!

Ashraf Suyyagh a.suyyagh@ju.edu.jo