
1

University of Jordan

Computer Engineer and Networks Master

Advanced Computer Architecture, Research Report

Trace Cash.

Name: Dua’a Ibrahim Al-Najdawi

Date: 2/12/2009

2

Abstract:

The trace cache is a proposed solution to achieving high instruction fetches

bandwidth by buffering and reusing dynamic instruction traces. This work presents

a new block-based trace cache implementation that can achieve higher IPC

performance with more efficient storage of traces. The trend in superscalar design

has been wider dispatch/issue window, more resources (i.e. functional units,

physical registers, etc) and deeper speculation. However, despite these hardware

enhancements, there exist bottlenecks that diminish the throughput. One such

hindrance is the execution of long noncontiguous instruction sequences that cannot

be fetched in a continuous stream from traditional instruction caches because

instructions are stored in a static order in which they were compiled. A new cache

structure, called Trace Cache, was proposed by Rotenberg et.al in [1]. This cache

stores instructions in their dynamic order of execution, and hence provides a high

bandwidth for instruction fetching.

3

Introduction:

Now all the processors are superscalar processors and have the instruction

level parallelisms technique. The superscalar design has to increase the scale of

these techniques: wider dispatch/issue, larger windows, more physical registers,

more functional units, and deeper speculation. As the issue width of superscalar

processors is increased, instruction fetch bandwidth requirements will also

increase.

 As mentioned in reference 1 and 2, as aggressive instruction-level

parallelism techniques are widely used in superscalar processor design, the

dispatch/issue window becomes larger and larger and branch speculation is getting

deeper, therefore, instruction fetch bandwidth is becoming a performance

bottleneck. There are also some other factors appearing when issue rate exceeds

four instructions per cycle:

(1) Branch throughput: if only one condition branch is predicted per cycle, then the

window can grow at the rate of only one basic block per cycle.

(2) Noncontiguous instruction alignment: instructions to be fetched may not be in

contiguous cache locations because of conditional branch or jump instructions, so

it will cause a high fetching latency if there is no other logic to fetch these

instructions in parallel and align them and pass them up the pipeline.

(3) Fetch unit latency: if a branch was mispredicted, recovery much be done to

resolve this mispredition. Some instructions have to be squashed from pipeline

stages and fetching needs to be redirected. The startup cost of redirecting fetching

will cause fetch unit latency.

4

Rotenberg et al [1] proposed Trace Cache technique to address the above

problems. Trace Cache is a hardware structure, as shown in figure1, each line of

which stores a snapshot, or trace, of dynamic instruction stream. A trace is a

sequence of at most n instructions and at most m basic blocks starting at any point

in the dynamic instruction stream. A trace is specified by a starting address and a

sequence of up to m-1 branch outcomes which describe the path followed. A line

of trace cache is filled as instructions are fetched from the instruction cache. If the

same trace is encountered again in the course of executing the program, it is fed

directly to the decoder. Otherwise, fetching normally proceeds from the instruction

cache. The reason Trace Cache works is program properties of temporal locality

and easily predicted branch behavior.

Figure1:trace cash[3]

5

Starting of the trace cache:

The earliest widely acknowledged academic publication of trace cache was

by Eric Rotenberg, Steve Bennett, and Jim Smith in their 1996 paper "Trace

Cache: a Low Latency Approach to High Bandwidth Instruction Fetching."

propose supplementing the conventional instruction cache with a trace cache as

shown in figure 1. For the Instruction Benchmark Suite (IBS) and SPEC92 integer

benchmarks, a 4 kilobyte trace cache improves performance on average by 28%

over conventional sequential fetching.

Then the same researchers write “ATrace Cache Microarchitecture and

evaluation “. The microarchitecture provides high instruction fetch bandwidth

with low latency by explicitly sequencing through the program at the higher level

of traces, both in terms of 1) control flow prediction and 2) instruction supply. For

the SPEC95 integer benchmarks, trace-level sequencing improves performance

from 15 percent to 35 percent over an otherwise equally sophisticated, but

contiguous, multiple-block fetch mechanism[2].

http://en.wikipedia.org/w/index.php?title=Eric_Rotenberg&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Steve_Bennett_(academic)&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Jim_Smith_(academic)&action=edit&redlink=1

6

 Data Trace Cache:An Application Specific Cach eArchitecture [3]

The researchers here focus on tree data structures which are responsible for a

significant component of the memory traffic in several applications. We have

observed that tree accesses create a simple to characterize trace of memory

references and propose a data trace cache design to exploit the locality of reference

in these data traces.

And their study reveals that data trace caches can reduce the total number of

misses from 7% to 53% for accesses to rooted tree data structures as compared to a

conventional cache for a variety of applications for small cache sizes (256 - 1024

bytes). Such caches are in keeping with the philosophy of victim caches, stream

buffers, and pre-fetch buffers in that relatively small investments in silicon can

realize substantive reduction in off-chip memory bandwidth demand.

7

Trace Cache Sampling Filter [2]
I is simple mechanism to increase the utilization of a small trace cache, and

simultaneously reduce its power consumption. The sampling filter exploits the

“hot/cold trace” principle, which divides the population of traces into two groups.

The first group contains “hot traces” that are executed many times from the

trace cache and contribute the majority of committed instructions. The second

group contains “cold traces” that are rarely executed, but are responsible for the

majority of writes to an unfiltered cache.

The sampling filter selects traces without any prior knowledge of their

quality. However, as most writes to the cache are of “cold traces” it statistically

filters out those traces, reducing cache turnover and eventually leading to higher

quality traces residing in the cache.

 [1]Results show that the sampling filter can increase the number of hits per

build (utilization) by a factor of 38, reduce the miss rate by 20% and improve the

performance-power efficiency by 15%.Further improvements can be obtained by

extensions to the basic sampling filter: allowing “hot traces” to bypass the

sampling filter, combining of sampling together with previously proposed filters,

and changing the replacement policy in the trace cache. Those techniques

combined with the sampling filter can reduce the miss rate of the trace cache by up

to 40%.

8

From recent solutions I pick new hardware technique called diverge on miss

:[4]

The new processors are multicore with wide SIMD (Single Instruction,

Multiple Data). The researcher in reference [4] introduce a hardware technique

called “diverge on miss” that allows SIMD cores to better tolerate memory latency

for workloads with non-contiguous memory access patterns. Individual threads

within a SIMD “warp” are allowed to slip behind other threads in the same warp,

letting the warp continue execution even if a subset of threads are waiting on

memory. Diverge on miss can either increase the performance of a given design by

up to a factor of 3.14 for a single warp per core, or reduce the number of warps per

core needed to sustain a given level of performance from 16 to 2 warps, reducing

the area per core by 35%.

9

Conclutions :

Trace caches have been effectively used as a solution to the problem of fetch

mechanism bottlenecks in recent processors. Higher performance is gleaned by

increasing the sizes of the trace caches, which brings along higher power

consumption. Towards this end, I found research that promises a higher

performance with lesser overheads and the conventional trace cache size. Which is

the Trace Cache Sampling Filter, and diverge on miss.

10

References:

1- Eric Rotenberg, James E. Smith, Steve Bennett,"Trace Cache: a Low

Latency Approach to High Bandwidth Instruction Fetching" micro, pp.24,

29th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO'96), 1996.

2- MICHAEL BEHAR , AVI MENDELSON , AVINOAM KOLODNY,

“Trace Cache Sampling Filter”.

3- Eric Rotenberg, Steve Bennett, and James E. Smith. A Trace Cache

Microarchitecture and Evaluation, in IEEE Transactions on Computers,

48(2):111-120, February 1999.

4- David Tarjan, Jiayuan Meng and Kevin Skadron ,(2009),Increasing Memory

Miss Tolerance for SIMD Cores.

5- Trace Cache, Bing Chen , Musawir Ali. , www.cs.ucf.edu

6- trace cache, Leon Gu,Dipti Motiani

http://www.cs.ucf.edu/

