
A D V A N C E D C O M P U T E R A R C H I T E C T U R E
U N I V E R S I T Y O F J O R D A N

D R . G H E I T H A B A N D A H

D O N E B Y

DUA’A A L - N A J D A W I

Trace cache
1

Introduction I:
2

 Now all the processors are superscalar processors
and have the instruction level parallelisms
technique. The superscalar design has to increase the
scale of these techniques: wider dispatch/issue,
larger windows, more physical registers, more
functional units, and deeper speculation. As the issue
width of superscalar processors is increased,
instruction fetch bandwidth requirements will also
increase

Introduction II:
3

 instruction fetch bandwidth is becoming a
performance bottleneck. There are also some other
factors appearing when issue rate exceeds four
instructions per cycle:

4

 (1) Branch throughput: if only one condition branch is
predicted per cycle, then the window can grow at the rate
of only one basic block per cycle.

 (2) Noncontiguous instruction alignment: instructions to
be fetched may not be in contiguous cache locations
because of conditional branch or jump instructions, so it
will cause a high fetching latency if there is no other logic
to fetch these instructions in parallel and align them and
pass them up the pipeline.

 (3) Fetch unit latency: if a branch was mispredicted,
recovery much be done to resolve this mispredition.
Some instructions have to be squashed from pipeline
stages and fetching needs to be redirected. The startup
cost of redirecting fetching will cause fetch unit latency.

5

Trace Cache technique was
proposed by Rotenberg et al [1] to

address the above problems.

"Trace Cache: a Low Latency
Approach to High Bandwidth

Instruction Fetching."

6

 For the Instruction Benchmark Suite (IBS) and
SPEC92 integer benchmarks, a 4 kilobyte trace cache
improves performance on average by 28% over
conventional sequential fetching.

What is trace cach?
7

 Trace Cache is a hardware structure, each line of
which stores a snapshot, or trace, of dynamic
instruction stream. A trace is a sequence of at most
n instructions and at most m basic blocks starting
at any point in the dynamic instruction stream.

8

Result
9

 The trace cache is a proposed solution to achieving
high instruction fetches bandwidth by buffering and
reusing dynamic instruction traces. This work
presents a new block-based trace cache
implementation that can achieve higher IPC
performance with more efficient storage of traces.

Trace Cache Sampling Filter
10

 This is new technique suggests that instead of building all

the traces and trying to select the good ones among them,

it is more efficient to make a preliminary selection of

traces. This selection is based on a random sampling

approach.

Trace Cache Sampling Filter
11

 the Sampling Filter improves trace cache and overall

system performance, while reducing power dissipation.

The Sampling Filter reduces admission of traces that are

not used prior to their eviction from the cache, and

prolongs the percentage of time a trace is in its live phase

during its stay in the cache. Moreover, the Sampling Filter

reduces duplication between the trace cache and the

instruction cache and thus reduces the overall misses in

the first level of cache hierarchy.

Trace Cache Sampling Filter
12

 I is simple mechanism to increase the utilization of a
small trace cache, and simultaneously reduce its
power consumption. The sampling filter exploits the
“hot/cold trace” principle, which divides the
population of traces into two groups.

Trace Cache Sampling Filter
13

 The first group contains “hot traces” that are
executed many times from the trace cache and
contribute the majority of committed instructions.
The second group contains “cold traces” that are
rarely executed, but are responsible for the majority
of writes to an unfiltered cache.

Trace Cache Sampling Filter
14

 The sampling filter selects traces without any prior
knowledge of their quality. However, as most writes
to the cache are of “cold traces” it statistically filters
out those traces, reducing cache turnover and
eventually leading to higher quality traces residing in
the cache.

Trace Cache Sampling Filter
15

 Results show that the sampling filter can increase
the number of hits per build (utilization) by a factor
of 38, reduce the miss rate by 20% and improve the
performance-power efficiency by 15%.Further
improvements can be obtained by extensions to the
basic sampling filter: allowing “hot traces” to bypass
the sampling filter, combining of sampling together
with previously proposed filters, and changing the
replacement policy in the trace cache. Those
techniques combined with the sampling filter can
reduce the miss rate of the trace cache by up to 40%.

Thank you

16

