
GPU Computing

The Ascend of the Coprocessor
Ashraf Suyyagh



In this Presentation

• What are GPUs, GPU computing?
• Why GPU Computing?
• Hardware Organization
• Programming Models – CUDA
• Performance Gains
• Limitations on Performance Gains
• Energy Efficiency
• Open Challenges and Future Research



What are GPUs, GPU Computing?

• Specialized image synthesis processors
designed to handle graphic computations and
scene generation, which are of parallel nature
(same operation on many pixels  high
throughput!)

• GPU computing is the use of GPUs for general
purpose computing rather than standard
graphical computing.

3



Why use GPUs for General Purpose 
Computations?

• CPUs are suffering from performance growth slow down, limits
to exploiting ILP, power and thermal limitations. Multi core
power not used to its full!

• GPUs are a commodity, found in all PCs!

• Modern GPUs provide extensive resources: massive parallelism
and processing cores, high arithmetic intensity, high memory
bandwidth, high floating point precision, and most importantly
flexible and increased programmability

• GPUs are energy efficient!

• Inherent parallelism in hardware design is suitable for high end
computing



GPU Hardware Organization and 
Development

•Early Designs (1970s – 1990s): fixed hardwire pipelines, inflexible
Graphic programmers restricted by amount of detail and realism, couldn’t apply their

own set of programs

•1st Generation of programmable GPUs: replaced stages of graphic pipeline
with specialized programmable cores, namely pixel and vertex processors
(e.g. NVIDIA GeForce 6 series, 2004)
Problem: depending on load, some processing cores were congested, others idle

• 2nd Generation of programmable GPUs (1st Unified shader generation):
introduced unified processors (shaders) (e.g. NVIDIA GeForce 8800 GTX)
Offer dynamic load balancing, each processor could be programmed to do the job of any

shader!

 True start of general purpose computing

•2nd Generation of programmable GPUs (2nd Unified shader generation):
introduced higher memory bandwidths, 64-bit high precision for the first
time, dynamic power management (e.g. NVIDIA GeForce G200 series)



GeForce 8800 GTX Organization

6



Closer Look at the Heart of 8800 GTX

7

• The scalable processor array consists of
Texture Processing Clusters (TPC)

• Each TPC encompasses a couple of
Streaming Multiprocessors (SM)

• Each SM has eight Streaming Processors
(SP), which are single precision floating
point ALUs

• A 16kB-16 banks dedicated shared
memory is built into each SM, also
referred to as Per-Block Shared Memory
(PBSM)



Programming Models

• Parallel computing needs new programming models  sequential does
not scale!

• No support for general computing in the early beginnings, had to use the
Graphical programming model and APIs (DirectX, OpenGL) to program
applications on the CPU
 Needed extensive knowledge of the underlying hardware

 Think your problem in graphical terms!

Cumbersome, inefficient and highly restrictive!

• In 2007, NVIDIA introduced the Compute Unified Device Architecture
(CUDA) programming model
Abstracts the complexity of the complex graphical hardware

extends the C/C++ programming language, high level API

8



The CUDA Model

• Data arrays are partitioned into blocks which are further partitioned into elements on the
condition that the blocks can be independently computed in parallel and the elements can
cooperatively be computed in parallel.

• Programmers write sequential code (kernels) run on the CPU (host) which communicates
with GPU (device) through drivers and instantiate threads

• Kernels represent parallel tasks across a set of parallel threads on the GPU

• Threads are grouped into thread blocks with a maximum set of 512 concurrent threads which
can efficiently cooperate, communicate, synchronize and share data among themselves

• Thread ID (TID) number used to select work and index shared data arrays.

• Thread Block are grouped into grids, also given unique Block ID numbers

• Both grids and thread blocks can be presented in 1-, 2- or 3 dimensional fashion

• Kernel in its entirety is a sequential code, the actual specification of the dimensions of the
grid and thread blocks at kernel invocation time by the programmer explicitly specifies the
amount of parallelism

9



The CUDA Model 
- Continued

• Data communication between
threads within a single thread
block is through either the shared
memory (low latency) or global
memory (high latency)

• Data communication between
threads blocks and grid through
global memory only

• Independent thread blocks
executed concurrently, dependent
ones sequentially. Same for
kernels (grids), synchronization at
this level managed by user

10



Performance Evaluation

• Many researches were conducted to compare the
performance of GPUs against CPUs for high end
computing and inherently parallel tasks!

• GPUs outperform CPUs in this application domain

• Speed Ups are orders of magnitude higher than
over single and multithreaded implementations
of the same application run on CPUs

11



Sample Results

Performance of a triangular matrix equations solver algorithms on CPU and GPU for large 
matrices n < 4000 (left) and small matrices n<400 (middle), speed up for a neural network 

application (left)
• Effect of memory overhead in GPUs
• Thread start up overhead
• Bank conflicts and per-block thread number effects

12



Performance Limitations (1)

Hardware Organization Implications:
• Memory overhead: The total bandwidth in

between the on board graphics memory and
the GPU is an order of magnitude higher than
that of the PCI Express Bus (e.g. 86.4GB/s vs 8
GB/s)

• Bank Conflicts: the SM 16kB shared memory
is divided into 16 banks, maximum
performance is achieved when addresses in
one row.

 Therefore to maximize GPU computing
efficiency and achieve higher speed ups and
performance gains, programmers need
specific knowledge of the underlying
hardware architecture and implementation
as well as memory hierarchy.

13

Performance overhead of bank 
conflicts



Performance Limitations (2)

• Programming Model
Limitations:

• Control flow overhead: CUDA is not a purely
data-parallel model due to thread divergence
issue. Thread divergence is caused by control
flow instructions (i.e. if and switch statements)
when threads within a warp follow different
branches.

• Producer- Consumer Overhead: the CUDA
programming model specifies that thread blocks
are run to completion and leave no persistent
state in the per-block shared memory. To
communicate results in between kernels, in a
dependent producer consumer kernel pair
relationship, is only achieved through the global
device memory

• Non-contiguous memory access

14

Performance overhead of divergent 
threads



Energy Efficiency

• GPUs are often perceived 
as power hungry devices 
because they have high 
power ratings! (new 
models 145W – 236W!!)

• Research show that GPUs 
are Energy efficient 
though relative to CPUs

15

A plot of the execution times and 
power consumption of the 

serial/multrihreaded/CUDA GEM 
software implementations



Open Challenges

• Need for an even higher level of programming models and APIs
Data placement management, communication and synchronization are still managed by

users (complex)

• Overcome the limitations of the heterogonous memory structure which
provides for memory bandwidth bottlenecks

• Little research has been conducted on the optimization of GPU energy
performance and efficiency. Power and thermal issues will soon prove
challenging

• Provide mechanisms to exploit the power of CPUs and GPUs in solving
generic problems based on collaborative and a heterogeneous
environment with dynamic load balancing

16



The Future

• GPUs are here to stay; they are not to be
considered rivals to CPUs but rather as
cooperators for each processor has its own
application domain at which it excels most.

• NVIDIA introduced its new Architecture: Fermi
with 512 cores, L2 cache and Giga thread
scheduler (September 2009)

• Intel entered the domain by announcing an
x86 based GPU version: Larabee (2009)

17



Thank You 


18


	GPU Computing
	In this Presentation
	What are GPUs, GPU Computing?
	Why use GPUs for General Purpose Computations?
	GPU Hardware Organization and Development�
	GeForce 8800 GTX Organization
	Closer Look at the Heart of 8800 GTX
	Programming Models
	The CUDA Model
	The CUDA Model - Continued
	Performance Evaluation
	Sample Results
	Performance Limitations (1)
	Performance Limitations (2)
	Energy Efficiency
	Open Challenges
	The Future
	Thank You �

