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What are GPUs, GPU Computing?

e Specialized image synthesis processors
designed to handle graphic computations and
scene generation, which are of parallel nature
(same operation on many pixels = high
throughput!)

* GPU computing is the use of GPUs for general
purpose computing rather than standard
graphical computing.




Why use GPUs for General Purpose
Computations?

e CPUs are suffering from performance growth slow down, limits
to exploiting ILP, power and thermal limitations. Multi core
power not used to its full!

 GPUs are a commodity, found in all PCs!

 Modern GPUs provide extensive resources: massive parallelism
and processing cores, high arithmetic intensity, high memory
bandwidth, high floating point precision, and most importantly
flexible and increased programmability

e GPUs are energy efficient!

* Inherent parallelism in hardware design is suitable for high end
computing




GPU Hardware Organization and
Development

*Early Designs (1970s — 1990s): fixed hardwire pipelines, inflexible

— Graphic programmers restricted by amount of detail and realism, couldn’t apply their
own set of programs

15t Generation of programmable GPUs: replaced stages of graphic pipeline
with specialized programmable cores, namely pixel and vertex processors
(e.g. NVIDIA GeForce 6 series, 2004)

—>Problem: depending on load, some processing cores were congested, others idle

» 2"d Generation of programmable GPUs (15t Unified shader generation):
introduced unified processors (shaders) (e.g. NVIDIA GeForce 8800 GTX)

- Offer dynamic load balancing, each processor could be programmed to do the job of any
shader!

—> True start of general purpose computing

«2nd Generation of programmable GPUs (2nd Unified shader generation):
introduced higher memory bandwidths, 64-bit high precision for the first
time, dynamic power management (e.g. NVIDIA GeForce G200 series)




GeForce 8800 GTX Organization
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Closer Look at the Heart of 8800 GTX

* The scalable processor array consists of Sinsaming bidipmcazsor
Texture Processing Clusters (TPC) T

e Each TPC encompasses a couple of
Streaming Multiprocessors (SM)

e Each SM has eight Streaming Processors
(SP), which are single precision floating
point ALUs

e A 16kB-16 banks dedicated shared
memory is built into each SM, also

referred to as Per-Block Shared Memory e
(PBSM)




Programming Models

Parallel computing needs new programming models = sequential does
not scale!

No support for general computing in the early beginnings, had to use the
Graphical programming model and APls (DirectX, OpenGL) to program
applications on the CPU

- Needed extensive knowledge of the underlying hardware

—> Think your problem in graphical terms!

- Cumbersome, inefficient and highly restrictive!

In 2007, NVIDIA introduced the Compute Unified Device Architecture
(CUDA) programming model

- Abstracts the complexity of the complex graphical hardware

- extends the C/C++ programming language, high level API



The CUDA Model

Data arrays are partitioned into blocks which are further partitioned into elements on the
condition that the blocks can be independently computed in parallel and the elements can
cooperatively be computed in parallel.

Programmers write sequential code (kernels) run on the CPU (host) which communicates
with GPU (device) through drivers and instantiate threads

Kernels represent parallel tasks across a set of parallel threads on the GPU

Threads are grouped into thread blocks with a maximum set of 512 concurrent threads which
can efficiently cooperate, communicate, synchronize and share data among themselves

Thread ID (TID) number used to select work and index shared data arrays.
Thread Block are grouped into grids, also given unique Block ID numbers
Both grids and thread blocks can be presented in 1-, 2- or 3 dimensional fashion

Kernel in its entirety is a sequential code, the actual specification of the dimensions of the
grid and thread blocks at kernel invocation time by the programmer explicitly specifies the
amount of parallelism




The CUDA Model
- Continued

Data communication between
threads within a single thread
block is through either the shared
memory (low latency) or global
memory (high latency)

Data communication between
threads blocks and grid through
global memory only

Independent thread blocks
executed concurrently, dependent
ones sequentially. Same for
kernels (grids), synchronization at
this level managed by user

Kernel, Barrier, Kernel Sequence
kernelF 20 grid is 3 x 2 thread blocks;
each block is 5 x 3 threads
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Performance Evaluation

 Many researches were conducted to compare the
performance of GPUs against CPUs for high end
computing and inherently parallel tasks!

e GPUs outperform CPUs in this application domain

e Speed Ups are orders of magnitude higher than
over single and multithreaded implementations
of the same application run on CPUs
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Sample Results
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Performance of a triangular matrix equations solver algorithms on CPU and GPU for large
matrices n < 4000 (left) and small matrices n<400 (middle), speed up for a neural network
application (left)

 Effect of memory overhead in GPUs

e Thread start up overhead
e Bank conflicts and per-block thread number effects
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Performance Limitations (1)

Hardware Organization Implications:

_).

Memory overhead: The total bandwidth in
between the on board graphics memory and
the GPU is an order of magnitude higher than
that of the PCI Express Bus (e.g. 86.4GB/s vs 8
GB/s)

Bank Conflicts: the SM 16kB shared memory
is divided into 16 banks, maximum
performance is achieved when addresses in
one row.

Therefore to maximize GPU computing
efficiency and achieve higher speed ups and
performance gains, programmers need
specific knowledge of the underlying
hardware architecture and implementation
as well as memory hierarchy.
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Performance Limitations (2)

 Programming Model
Limitations:

e (Control flow overhead: CUDA is not a purely
data-parallel model due to thread divergence
issue. Thread divergence is caused by control
flow instructions (i.e. if and switch statements)
when threads within a warp follow different
branches.

* Producer- Consumer Overhead: the CUDA
programming model specifies that thread blocks
are run to completion and leave no persistent
state in the per-block shared memory. To 012345678 01011121314151617 18192021 222304252827 2823 3091
communicate results in between kernels, in a e
dependent producer consumer kernel pair
relationship, is only achieved through the global
device memory

C Non-contiguous memory access

Performance overhead of divergent
threads
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Energy Efficiency

e GPUs are often perceived
as power hungry devices
because they have high
power ratings! (new
models 145W — 236W!!)

i ResearCh ShOW that GPUS A plot of the execution times and
are Energy effICIent power consumption of the

serial/multrihreaded/CUDA GEM

though relat|ve to CPUS software implementations
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Open Challenges

Need for an even higher level of programming models and APlIs

- Data placement management, communication and synchronization are still managed by
users (complex)

Overcome the limitations of the heterogonous memory structure which
provides for memory bandwidth bottlenecks

Little research has been conducted on the optimization of GPU energy
performance and efficiency. Power and thermal issues will soon prove
challenging

Provide mechanisms to exploit the power of CPUs and GPUs in solving
generic problems based on collaborative and a heterogeneous
environment with dynamic load balancing
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The Future

e GPUs are here to stay; they are not to be
considered rivals to CPUs but rather as
cooperators for each processor has its own
application domain at which it excels most.

 NVIDIA introduced its new Architecture: Fermi
with 512 cores, L2 cache and Giga thread
scheduler (September 2009)

* Intel entered the domain by announcing an
x86 based GPU version: Larabee (2009)
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