0907542 Patter Recognition (Spring 2010) Midterm Exam

اسم: رقم التسجيل: رقم الشعبة:

Instructions: Time **60** min. Closed books & notes. No calculators or mobile phones. No questions are allowed. Show

your work clearly. Every problem is for 10 marks.

Q1. Consider a two-class two-dimensional classification task, where the feature vectors in each of the classes ω_1 and ω_2 are distributed according to

$$p(x|\omega_1) = \frac{1}{\left(\sqrt{2\pi\sigma_1^2}\right)^2} \exp\left(-\frac{1}{2\sigma_1^2}(x-\mu_1)^T(x-\mu_1)\right)$$

$$p(x|\omega_2) = \frac{1}{\left(\sqrt{2\pi\sigma_2^2}\right)^2} \exp\left[-\frac{1}{2\sigma_2^2}(x-\mu_2)^T(x-\mu_2)\right]$$

with

$$\mu_1 = [1, 1]^T$$
, $\mu_2 = [1.5, 1.5]^T$, $\sigma_1^2 = \sigma_2^2 = 0.2$

Assume that $P(\omega_1) = P(\omega_2)$ and design a Bayesian classifier that minimizes the error probability. Solution:

$$\begin{aligned} p(x|\omega_{1})P(\omega_{1}) &>< p(x|\omega_{2})P(\omega_{2}) \\ p(x|\omega_{1}) &>< p(x|\omega_{2}) \end{aligned}$$

$$\frac{1}{\left(\sqrt{2\pi\sigma_{1}^{2}}\right)^{2}} \exp\left(-\frac{1}{2\sigma_{1}^{2}}(x-\mu_{1})^{T}(x-\mu_{1})\right) &>< \frac{1}{\left(\sqrt{2\pi\sigma_{2}^{2}}\right)^{2}} \exp\left(-\frac{1}{2\sigma_{2}^{2}}(x-\mu_{2})^{T}(x-\mu_{2})\right) \end{aligned}$$

$$\exp\left(-\frac{1}{2\sigma_{1}^{2}}(x-\mu_{1})^{T}(x-\mu_{1})\right) &>< \exp\left(-\frac{1}{2\sigma_{2}^{2}}(x-\mu_{2})^{T}(x-\mu_{2})\right)$$

$$\left(-\frac{1}{2\sigma_{1}^{2}}(x-\mu_{1})^{T}(x-\mu_{1})\right) &>< \left(-\frac{1}{2\sigma_{2}^{2}}(x-\mu_{2})^{T}(x-\mu_{2})\right)$$

$$\frac{1}{2\sigma_{1}^{2}}(x-\mu_{1})^{T}(x-\mu_{1}) &<> \frac{1}{2\sigma_{2}^{2}}(x-\mu_{2})^{T}(x-\mu_{2})$$

$$(x-\mu_{1})^{T}(x-\mu_{1}) &<> (x-\mu_{2})^{T}(x-\mu_{2})$$

$$\begin{bmatrix} x_{1}-1 \\ x_{2}-1 \end{bmatrix} \begin{bmatrix} x_{1}-1 \\ x_{2}-1 \end{bmatrix} &<> \begin{bmatrix} x_{1}-1.5 \\ x_{2}-1.5 \end{bmatrix} \begin{bmatrix} x_{1}-1.5 \\ x_{2}-1.5 \end{bmatrix}$$

$$(x_{1}-1)^{2}+(x_{2}-1)^{2} &<> (x_{1}-1.5)^{2}+(x_{2}-1.5)^{2}$$

$$-2x_{1}+1-2x_{2}+1 &<> -3x_{1}+2.25-3x_{2}+2.25$$

$$x_{1}+x_{2} &<> 2.5$$

Q2. Consider a case in which class ω_1 consists of two feature vectors $[0, 0]^T$ and $[0, 1]^T$ and class ω_2 of $[1, 0]^T$ and $[1, 1]^T$. Use the perceptron algorithm in its form shown below, with $\rho_t = 0.7$ and $\mathbf{w}(0) = [-0.4, 1 1]^T$, to design the line separating the two classes. Draw the samples and the resulting classification line.

$$w(t+1) = w(t) - \rho_t \sum_{x \in Y} \delta_x x$$

Solution:

$$w(t+1) = w(t) - \rho_t \sum_{x \in Y} \delta_x x$$

$$w(1) = w(0) - \rho_t \sum_{x \in Y} \delta_x x = \begin{bmatrix} -0.4 \\ 1 \\ 1 \end{bmatrix} - 0.7(+1) \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - 0.7(+1) \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -0.4 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1.4 \\ 0.7 \\ 1.4 \end{bmatrix} = \begin{bmatrix} -1.8 \\ 0.3 \\ -0.4 \end{bmatrix}$$

$$w(2) = w(1) - \rho_t \sum_{x \in Y} \delta_x x = \begin{bmatrix} -1.8 \\ 0.3 \\ -0.4 \end{bmatrix} - 0.7(-1) \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - 0.7(-1) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1.8 \\ 1 \\ 1 \end{bmatrix}$$

$$w(3) = \begin{bmatrix} -1.8 \\ 1 \\ 1 \end{bmatrix} - 0.7(+1) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2.5 \\ 0.3 \\ 0.3 \end{bmatrix}$$

$$w(3) = \begin{bmatrix} -1.8 \\ 1 \\ 1 \end{bmatrix} - 0.7(+1) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2.5 \\ 0.3 \\ 0.3 \end{bmatrix}$$

$$w(3)^{T}x = 0$$

$$-2.5x_1 + 0.3x_2 + 0.3 = 0$$

0.2

0.0

0.2

0.4

0.6

8.0

1.0

1.2

1.4

Q3. You are considering building a classifier using two of the three features shown in the table below. Given the nine samples shown in this table, select two features using the *scatter criterion* method.

Sample	x_1	x_2	x_3	Class
1	5.5	4	31	1
2	5	4	35	1
3	6	1	33	1
4	3	0	27	2
5	1	0	25	2
6	2	3	23	2
7	7.5	5	40	3
8	8	5	50	3
9	7	5	60	3

						Mean		Diff *Diff			Within			between		
Sample	x1	x2	х3	Class	x1	x2	х3	x1	x2	х3	x1	x2	х3			
1	5.5	4	31	1	5.5	3	33	0	1	4	0.167	2	2.667	0.25	0	9
2	5	4	35	1	5.5	3	33	0.25	1	4						
3	6	1	33	1	5.5	3	33	0.25	4	0						
4	3	0	27	2	2	1	25	1	1	4	0.667	2	2.667	9	4	121
5	1	0	25	2	2	1	25	1	1	0						
6	2	3	23	2	2	1	25	0	4	4						
7	7.5	5	40	3	7.5	5	50	0	0	100	0.167	0	66.67	6.25	4	196
8	8	5	50	3	7.5	5	50	0.25	0	0						
9	7	5	60	3	7.5	5	50	0.25	0	100						
					5	3	36				1	4	72	15.5	8	326

J 16.5 3 5.528

Select x1 and x3.

