University of Jordan |
Computer Engineering Department |
CPE 542: Pattern Recognition |
Spring 2010 |
Instructor | Dr. Gheith Abandah | |||||||||||||||||||||
abandah@ju.edu.jo | ||||||||||||||||||||||
Home page | http://www.abandah.com/gheith | |||||||||||||||||||||
Office | Computer Engineering 405 | |||||||||||||||||||||
Office hours |
|
|||||||||||||||||||||
No. of credit hrs | 3 | |||||||||||||||||||||
Prerequisites | 1901473: Operating Systems | |||||||||||||||||||||
Time and room | Mon and Wed 9:30-11:00, CPE 001 | |||||||||||||||||||||
Textbook | Theodoridis S, Koutroumbas K (2006) Pattern recognition, 3rd edn. Academic Press. | |||||||||||||||||||||
References |
Pattern Classification (2nd ed.) by Richard O. Duda, Peter E. Hart and David G. Stork, Wiley Interscience, 2001. |
|||||||||||||||||||||
Grading | ||||||||||||||||||||||
Mid-Term Exam | 30% | |||||||||||||||||||||
Term Project | 20% | |||||||||||||||||||||
Final Exam | 50% | |||||||||||||||||||||
Policies |
|
|||||||||||||||||||||
Catalog Description | Basic concepts in pattern recognition. Classifiers, data mining, and knowledge discovery. Basic concepts of decision functions. Linear decision functions, generalized decision functions, and orthogonal functions. Classification by distance functions and clustering. Minimum distance classification. Single prototypes, multi-prototypes, and nearest-neighbor classification. Clustering and clusters: threshold order-dependent clustering algorithm, Max-Min distance method, c-means iterative algorithm (CMI). The ISODATA algorithm. Classification using statistical approaches. A general Bayes classifier. Normally distributed patterns: univariate, multivariate, multiclass multivariate. Estimation of probability density functions. Feature selection: introduction, distance measures, and clustering transformations. Feature selection methods: entropy minimization, and functional approximation. Fuzzy concepts: fuzzy set theory, the extension principle, and fuzzy relations. Fuzzy and crisp classification. Fuzzy clustering: fuzzy c-means iterative algorithm (FCMI), and fuzzy partitioning. Fuzzy pattern recognition. Syntactic pattern recognition: grammar types, selecting primitives, syntax analysis for recognition, and stochastic languages. Introduction to NNs, the McCulloch-Pitts (MP) neuron, Hebb NN, the Perceptron, the ADALINE, and Backpropagation NN and its applications: Pattern classification using Neural Networks (NNs). | |||||||||||||||||||||
Tentative outline |
Midterm Exam
Final
Exam |
|||||||||||||||||||||
Special Dates |
|
|||||||||||||||||||||
Handouts | Slides
Suggested problems: Chapter 2: 2.2, 2.7, 2.8, 2.12, 2.31 Chapter 3: 3.4, 3.6, 3.9 (Some problems require programming) Chapter 4: 4.1, 4.3
Matlab Pattern Classification 1 Matlab Pattern Classification 2 Matlab Pattern Classification 3 The midterm exam was given on Saturday 31/3/2010, Solution, Problem 3 worksheet Grades as of 18/5/2010 including all term work out of 50%.
|
|||||||||||||||||||||
Important Links |