University of Jordan Computer Engineering Department CPE439: Computer Design Lab

Experiment 8: The Control Module

It is required to construct a Verilog module for a control unit suitable for incorporation in your PIC16F84A design. This unit should provide the control signals needed to implement the instructions summarized in Table 1. This table specifies, for every instruction, its description, execution time in cycles, instruction format, and the affected status flags.

Mnemonic,		Deceriation	0		Status						
Opera	nds	Description	Cycles	MSb			LSb	Affected			
BYTE-ORIENTED FILE REGISTER OPERATIONS											
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z			
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z			
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z			
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z			
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z			
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z			
DECFSZ	f, d	Decrement f, Skip if 0	1 (2)	00	1011	dfff	ffff				
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z			
INCFSZ	f, d	Increment f, Skip if 0	1 (2)	00	1111	dfff	ffff				
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z			
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z			
MOVWF	f	Move W to f	1	00	0000	lfff	ffff				
NOP	-	No Operation	1	00	0000	0xxx	xxxx				
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С			
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С			
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z			
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff				
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z			
BIT-ORIENTED FILE REGISTER OPERATIONS											
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff				
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff				
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff				
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff				
		LITERAL AND CONTROL	OPERATI	ONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z			
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z			
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk				
0070	1.										
GOTO	к	Go to address	2	10	lkkk	kkkk	kkkk	_			
IORLW	ĸ		1	11	1000	kkkk	kkkk	2			
MOVEW	К	Nove literal to W	1	11	00xx	kkkk	kkkk	kkk			
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk	kk			
RETURN	-	Return from Subroutine	2	11	1011	xxxx	xxxx				
CUBIW	Ŀ	Subtract W/ from literal	4	1.1	110	1.1.1.1	1-1-1-1				
SUBLW	K				TIOX	KKKK	KKKK	C,DC,Z			
XORLW	K	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	۷			

Table 1: PIC16F84A Instruction Set (modified)

This control unit can simply be implemented using a ROM. As shown in the figure below, the size of this control memory is sixty four 17-bit locations. The input to this memory consists of the six most significant bits of the fetched instructions IR_Data[13:8]. These six bits are used as an address to access one 17-bit location that contains the control signals of the fetched instruction. This memory should be implemented inside the control module using behavioral modeling similar to the module used to implement the flash program memory in Experiment 5.

The control module should have Verilog code similar to the following code:

```
module Control(Instr, W write, Write en, m, L or F,
            F write, C en, DC en, Z en,
            IR clear, IR clear cond, PC Sel, Push, Pop);
input [5:0] Instr;
output W write;
                      //active for instructions that write into W
output Write en;
                      //active for instructions that write into W or F
output [3:0] m;
output L_or_F;
output F write;
                      //active for instructions that write into F
output C_en, DC_en, Z_en;
output IR clear;
                      //active for jump instructions
output IR clear cond; //active for conditional skip instructions
output [1:0] PC Sel,
output Push, Pop;
// implementation details are left to the student
```

endmodule

Additionally, you need to build simple combinational circuits to take care of the following:

- 1) The write enable of the Working register in the datapath should be a function of the "d" bit (IR_Data[7]), the W_write control signal, and the Write_en control signal.
- 2) The IR_Res signal in the program memory should be a function of the processor Reset signal, the IR_clear control signal, the IR_clear_cond control signal, and the Z status flag.
- 3) The DataWrite signal in the data memory should be a function of the "d" bit (IR_Data[7]), the F_write control signal, and the Write_en control signal.

Report

Your report should include detailed design and Verilog code for all modules. Additionally, you need to determine the contents of the Control Memory. For this purpose, you need to complete the following table:

Location	Instruction	W_write	Write_en	M[3:0]	L_or_F	F_write	C_en	DC_en	Z_en	IR_clear	IR_clear _cond	PC_Sel [1:0]	Push	Pop
00 0000	movwf, nop	0	1	1101	X	0	0	0	0	0	0	00	0	0
00 0001	subwf	0	1	1100	X	0	0	0	1	0	0	00	0	0
00 0011														
00 0100														
00 0110														
00 1000														
00 1001														
00 1010														
00 1100	1£	0	1	1001	1	0	1	0	0	0	0	00	0	0
00 1101	rli	0	1	1001	1	0	1	0	0	0	0	00	0	0
00 1111														
01 0000														
01 0010														
01 0100														
01 0101														
01 0110														
01 1000														
01 1001														
01 1011														
01 1100														
01 1110														
10 0000	call	0	0	XXXX	х	0	0	0	0	1	0	01	1	0
10 0001	call	0	0	XXXX	X	0	0	0	0	1	0	01	1	0
10 0010	call	0	0	XXXX XXXX	X	0	0	0	0	1	0	01	1	0
10 0100	call	0	0	XXXX	Х	0	0	0	0	1	0	01	1	0
10 0101	call	0	0	XXXX XXXX	X X	0	0	0	0	1	0	01	1	0
10 0111	call	0	0	XXXX	Х	0	0	0	0	1	0	01	1	0
10 1000														
10 1010														
10 1011														
10 1101														
10 1110														
11 0000														
11 0001														
11 0011														
11 0100														
11 0110														
11 0111														
11 1001														
11 1010 11 1011														
11 1100														
11 1101														
11 1110														

To demonstrate the correct operation of you design, initialize the control memory using the data in the previous table. Then test your design using the input signals shown in the following table.

Instr
00 0000
00 0001
00 1101
10 0000
11 1111