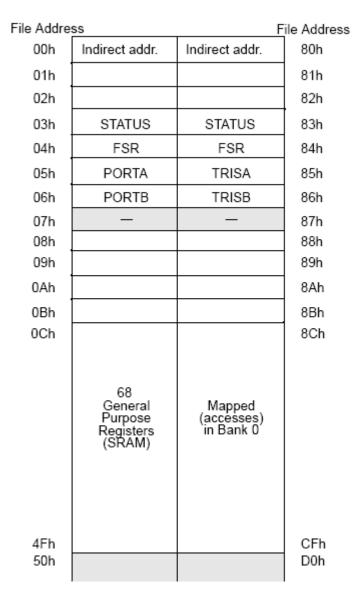
University of Jordan Computer Engineering Department CPE439: Computer Design Lab

Experiment 6: Data Memory Module

It is required to construct and test a Verilog module for a data memory suitable for incorporation in your PIC16F84A design. You should use modular design where you start by building and testing low-level modules using the library modules defined in **Lib439.v**, then use the low-level modules in larger modules. You can also reuse some of the modules that you have designed in previous experiments.


Data Memory

The data memory is partitioned into two areas. The first is the Special Function Registers (SFR) area, while the second is the General Purpose Registers (GPR) area. The SFRs control the operation of the device.

Portions of data memory are banked. The banked areas of the SFR are for the registers that control the peripheral functions. Banking requires the use of control bit (RP0) for bank selection. This control bit is located in the STATUS Register. Figure 1 shows the data memory map organization.

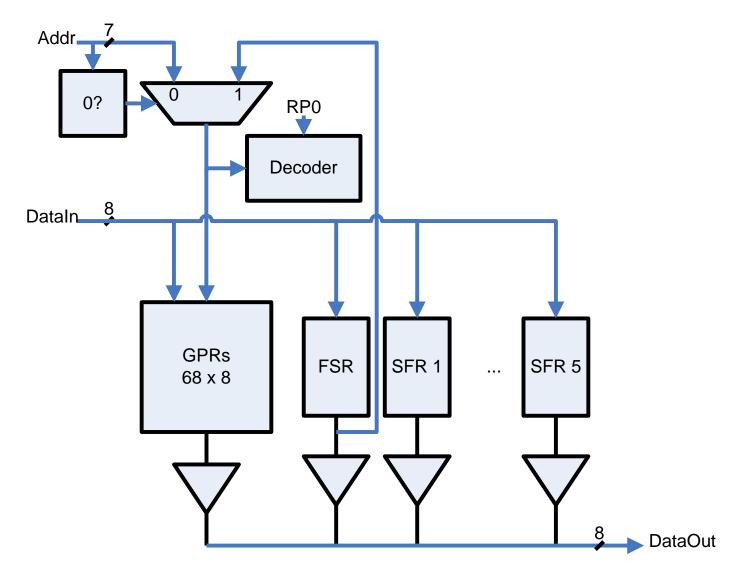
The entire data memory can be accessed either directly using the absolute address of each register file or indirectly through the File Select Register (FSR). Indirect addressing occurs when location 00h is accessed.

The data memory is partitioned into two banks which contain the general purpose and the special function registers registers. Bank 0 is selected by clearing the RP0 bit (STATUS<5>). Setting the RP0 bit selects Bank 1. Each Bank extends up to 4Fh. The first twelve locations of each Bank are reserved for the Special Function Registers. The remainder Purpose are General Registers.

Figure 1: Data Memory Map Organization

Each General Purpose Register (GPR) is 8-bits wide and is accessed either directly or indirectly through the FSR. The GPR addresses in Bank 1 are mapped to addresses in Bank 0. As an example, addressing location 0Ch or 8Ch will access the same GPR. The Special Function Registers (Table 1) are used by the CPU and Peripheral functions to control the device operation.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on RESET	
Bank	0			1	1	1	1	1	1	-	
00h	INDF	Uses cor	tents of FS	R to addre	ess Data Mem	ory (not a p	hysical re	gister)			
01h										-	
02h											
03h	STATUS ⁽²⁾			RP0			Z	DC	С	0xxx	
04h	FSR	Indirect D	Indirect Data Memory Address Pointer 0 xxxx xxxx								
05h	PORTA ⁽⁴⁾	—	—	-	RA4	RA3	RA2	RA1	RA0	x xxxx	
06h	PORTB ⁽⁵⁾	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	
07h	_	Unimpler	Unimplemented location							-	
08h											
09h	-										
0Ah	+										
0Bh	-										
Bank	1					1					
80h	INDF	Lisos Co	ntants of ES	P to addr	ess Data Mem	on/ (not a l	abyeical re	aistor)			
81h	INDE	Uses Co				iory (not a p		gister)			
										•	
82h	(0)			1	1	1		1	1		
82h 83h	STATUS ⁽²⁾			RP0			Z	DC	С	0xxx	
	STATUS ⁽²⁾ FSR	Indirect of	lata memory		pointer 0		Z	DC	С	0xxx	
83h		Indirect o	lata memory —		pointer 0 PORTA Data	a Direction F		DC	с		
83h 84h	FSR	—	lata memory — Data Directio	/ address	PORTA Data	Direction F		DC	С	xxxx xxx	
83h 84h 85h	FSR TRISA	– PORTB I	—	/ address — on Registe	PORTA Data	a Direction F		DC	С	xxxx xxx 1 111	
83h 84h 85h 86h	FSR TRISA	– PORTB I	— Data Directio	/ address — on Registe	PORTA Data	Direction F		DC	с	xxxx xxx 1 111	
83h 84h 85h 86h 87h	FSR TRISA	– PORTB I	— Data Directio	/ address — on Registe	PORTA Data	a Direction F		DC	С	xxxx xxx	
83h 84h 85h 86h 87h 88h	FSR TRISA	– PORTB I	— Data Directio	/ address — on Registe	PORTA Data	a Direction F		DC	c	xxxx xxx	


Table 1: Special Function Registers

Legend: x = unknown, u = unchanged. - = unimplemented, read as '0', q = value depends on condition

This module should have Verilog code similar to the following code:

```
endmodule
```

The following figure shows the top-level design of this data memory module.

In this experiment, you need to implement address multiplexer, decoder circuit, GPRs, SFRs, and tri-state butters. The associate circuits for the SFRs should be left to Experiment 7.

General Purpose Registers

The GPRs should be implemented using behavioral modeling as follows:

```
//
// General Purpose Registers, 68 x 8 bits
//
module GPRs(Dout, clock, wt, addr, Din);
output [7:0] Dout;
reg [7:0] Dout;
input clock, wt;
input [6:0] addr;
input [6:0] addr;
reg [7:0] MA [79:0]; //storage array
always @(addr)
if ((addr > 7'h0B) && (addr < 7'h50))
#6 Dout = MA[addr];</pre>
```

```
always @(posedge clock)
    if ((wt == 1) && (addr > 7'h0B) && (addr < 7'h50))
        #1 MA[addr] = Din;
endmodule</pre>
```

Report

Your report should include detailed design, Verilog code for all modules including your test modules, and timing diagram that demonstrates the correct operation of your design.