Midterm Exam Solution
رقم الشعبة:
رقم التسجيل:
Instructions: Time 50 min . Closed books \& notes. No calculators or mobile phones. No questions are allowed. Show your work clearly. Every problem is for 6 marks.

Q1. Assume that the instructions executed by a processor are broken down as follows:

Type	ALU	Control	Memory
Frequency	50%	20%	30%

If you can improve the performance of only one type of these three instruction types by a factor of 2, answer the following two questions.
(a) What type would you improve? \qquad ALU \qquad
(b) Using Amdahl's law, what is the resulting overall speedup? \qquad 4/3 \qquad

Speedup $=1 /(1-0.5+0.5 / 2)=1 / .75=4 / 3$

Q2. Describe how the branch history table (BHT) and the branch target buffer (BTB) are used in branch prediction.
\qquad Using the branch instruction address,
\qquad 1) The BHT is consulted to predict the branch direction

\qquad
 2) The BTB is consulted to predict the branch target address

Q3. Assume that you have a typical 5-stage pipelined processor that uses forwarding and stalls to solve data hazards, resolves branches in the decode stage, and has one branch delay slot. After you do pipeline scheduling (rearrange instructions) for the following code sequence, the minimum number of cycles needed to execute this code sequence is: \qquad 9 \qquad (You must show your rearranged code)

Original Code Sequence		Rearranged Code Sequence	
L1:lw lw add addi bne nop	$\begin{array}{ll} \text { R5, } & 0 \text { (R1) } \\ \text { R6, } & 0 \text { (R5) } \\ \text { R7, } & \text { R7, } \\ \text { R1, } & \text { R1, } \\ \text { R1, } & \text { R2, } \end{array}$	L1: lw addi lw bne add	R5, 0 (R1) R1, R1, \#-4 R6, 0 (R5) R1, R2, L1 R7, R7, R6

Q4. Assume that the following code sequence is executed by a speculative superscalar processor of degree 2. This processor uses reservation stations and reorder buffer. The integer latency is 1 cycle and the load latency is 2 cycles. The processor has one address calculation unit, one memory access unit, one integer ALU unit, and one branch unit. Assume that the processor predicts that the branch instruction is not taken and the branch is actually not taken. Using pipeline diagram in the space below, the number of cycles needed to fetch and commit these instructions is: \qquad 10 \qquad

		1	2	3	4	5	6	7	8	9			
1w	R2, 0 (R1)	F	I	A	M	W	C						
1 w	R3, 4 (R1)	F	I		A	M	W	c					
add	R4, R2, R3		F	I				E	W	c			
beq	R2, R3, Skip		F	I				E	W	C			
sub	R5, R2, R3			F	I				E	w			

Skip:

Q5. For a direct-mapped cache design with 32 -bit address, the following bits of the address are used to access the cache.

Tag	Index	Offset
$31-12$	$11-5$	$4-0$

(a) What is the cache line size (in words)? \qquad $2^{5} / 4=32 / 4=8$ words
(b) How many lines does the cache have? $\quad 2^{11-5+1}=2^{7}=128$ \qquad
(c) What is the ratio between total bits required for such a cache implementation over the data storage bits?

Ratio $=[128 *(32 * 8+20+1)] /[128 *(32 * 8)]=277 / 256$

Starting from power on, the following byte addressed cache references are recorded.

Address	Block Address	Cache Index	Hit or Miss
0	0	0	Miss
4	0	0	Hit
16	0	0	Hit
128	4	4	Miss
224	7	7	Miss
160	5	5	Miss
4100	128	0	Miss
30	0	0	Miss
140	4	4	Hit
3100	96	96	Miss

(d) How many blocks are replaced? __two blocks \qquad
(e) What is the hit ratio? \qquad 3/10 \qquad

