0907432 Computer Design (Spring 2010) <u>Midterm Exam Solution</u>

رقم الشعبة:		الأسم:								
Instructions : Time 5 your work clearly. E	50 min. Closed books & n very problem is for 6 mar	iotes. No calculators of ks.	r mobile phones. No que	stions are allowed. Show						
Q1. Assume that the	instructions executed by	a processor are broker	down as follows:							
Туре	pe ALU Control Memory									
Frequency	requency 50% 20% 30%									
If you can improv following two que (a) What type w	e the performance of only estions.	y one type of these thre	ee instruction types by a	factor of 2, answer the						
(b) Using AmdaSpeedup = 1 / (1-0.4)Q2. Describe how th	It's law, what is the result 5 + 0.5/2 = 1/.75 = 4/3 where branch history table (B)	Iting overall speedup? HT) and the branch tar	4/3 get buffer (BTB) are use	d in branch prediction.						
Using the br 1) The BH	ranch instruction addres	ss, ct the branch directio	n							
2) The BT	FB is consulted to predic	t the branch target a	ddress							
Q3. Assume that yo hazards, resolve scheduling (rear needed to execu	bu have a typical 5-stag s branches in the decod range instructions) for te this code sequence is	e pipelined processo e stage, and has one the following code so :9(You	r that uses forwarding a branch delay slot. Afte equence, the minimum a must show your rearr	and stalls to solve data er you do pipeline number of cycles anged code)						

Original Code Sequence			Rearranged Code Sequence				
L1:	lw lw add addi bne nop	R5, 0(R1) R6, 0(R5) R7, R7, R6 R1, R1, #-4 R1, R2, L1	L1:	lw addi lw bne add	R5, 0(R1) R1, R1, #-4 R6, 0(R5) R1, R2, L1 R7, R7, R6		

Q4. Assume that the following code sequence is executed by a speculative superscalar processor of degree 2. This processor uses reservation stations and reorder buffer. The integer latency is 1 cycle and the load latency is 2 cycles. The processor has one address calculation unit, one memory access unit, one integer ALU unit, and one branch unit. Assume that the processor predicts that the branch instruction is not taken and the branch is actually not taken. Using pipeline diagram in the space below, the number of cycles needed to fetch and commit these instructions is: ___10____

				1	2	3	4	5	6	7	8	9	0	1	2	3	4	5
lw	R2,	0(R	1)	F	I	A	Μ	W	С									
lw	R3,	4(R	1)	F	I		A	Μ	W	С								
add	R4,	R2,	R3		F	I				Е	W	С						
beq	R2,	R3,	Skip		F	I				Е	W	С						
sub	R5,	R2,	R3			F	I				Е	W	С					

Skip:

Q5. For a direct-mapped cache design with 32-bit address, the following bits of the address are used to access the cache.

Tag	Index	Offset
31-12	11-5	4-0

(a) What is the cache line size (in words)? $2^{5}/4 = 32/4 = 8$ words

(b) How many lines does the cache have? $2^{11-5+1} = 2^7 = 128$

(c) What is the ratio between total bits required for such a cache implementation over the data storage bits?

Ratio = [128 * (32*8 + 20 + 1)] / [128 * (32*8)] = 277/256

Starting from power on, the following byte addressed cache references are recorded.

Address	Block Address	Cache Index	Hit or Miss
0	0	0	Miss
4	0	0	Hit
16	0	0	Hit
128	4	4	Miss
224	7	7	Miss
160	5	5	Miss
4100	128	0	Miss
30	0	0	Miss
140	4	4	Hit
3100	96	96	Miss

(d) How many blocks are replaced? <u>two blocks</u>

(e) What is the hit ratio? <u>3/10</u>

<Good Luck>