0907422 Computer Networks (Fall 2009) <u>Midterm Exam</u>

رقم التسجيل: رقم الشعبة: 1

<u>Instructions</u>: Time **60** min. Closed books & notes. No calculators or mobile phones. **No questions are allowed**. Show your work clearly and limit your answer to the space provided.

الإسم:

Q1. State one unique advantage for each of the following access networks. Don't use same advantage to multiple networks. (*5 points*)

Access Network	Advantage
Dial-up Modem	Can use any telephone line
Digital Subscriber Line (DSL)	Uses the existing telephone infrastructure
Cable modems	Provides integrated services (data and TV)
Fiber to home	Provides high transfer rate
Wireless	Provides mobility of hosts

Q2. Give one case when packet loss occurs. (2 points)

____When a packet reaches a full queue. ____

Q3. Two hosts are connected via a router. The router has two links and each link is connected with one host. Each link is 125 meters long and has a transfer rate of 1 Gbps. If the router's queuing delay is 5 μs and the propagation speed is 250,000 km/s, what is the total transfer delay of a 1-KB packet from one host to the other? (Ignore processing delay). (*4 points*)

$$\begin{split} d_{proc} &= 0 \\ d_{queue} &= 5 \ \mu s \\ d_{tarns} &= 2 \ * \ (1 \ KB \ * \ 8 \ bits) \ / \ 1 \ ^{9} = 16 \ \mu s \\ d_{prop} &= \ (125 + 125) \ / \ 250 \ ^{8} 10^{6} = 1 \ \mu s \\ d_{total} &= 0 \ + \ 5 \ + \ 16 \ + \ 1 \ = \ 22 \ \mu s \end{split}$$

Q4. What does each of the following abbreviations stands for? (5 points)		
Abbreviation	Name	
HTTP	Hyper Text Transfer Protocol	
ТСР	Transmission Control Protocol	
UDP	User Datagram Protocol	
SMTP	Simple Mail Transfer Protocol	
DNS	Domain Name System	
Shorter access times allows the users to increase their browsing rate, thus resulting in higher		
 Q6. The local DNS server gets an IP address by contacting a hierarchy of DNS servers. List the order in which these DNS servers are accessed. (<i>3 points</i>) 1)Root 		
2)Top-level domain		
3)Authoritative		
 Q7. Find the UDP checksum of the following two binary numbers. (2 points) 1000 0000 1111 0000 + 1000 1111 0000 1000 		
10000 1111 1111 0000 1111 1111 + 	1000 1000 add the carry 1	
0000 1111 1111 1111 0000 0000	10010110complement	

Q8. The following diagram is the state diagram of a sender that achieves reliable data transfer (rdt 3.0) over a channel that has bit errors and loss. Some of the sender's actions are omitted from this diagram. For the events marked with "*", specify the needed actions. You can use pseudo code or narrative descriptions. (4 points) rdt_send(data) rdt_rcv(rcvpkt)&& sndpkt = make_pkt(0, data, checksum) * (corrupt(rcvpkt) || udt_send(sndpkt) isACK(rcvpkt,1)) start_timer rdt_rcv(rcvpkt) Λ Wait Wait for timeout for call Ofrom ACK0 above rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) rdt_rcv(rcvpkt) && isACK(rcvpkt,1) && notcorrupt(rcvpkt) * && isACK(rcvpkt,0) Wait Wait for timeout for call 1 from ACK1 above rdt_rcv(rcvpkt) Λ rdt_send(data) rdt_rcv(rcvpkt)&& sndpkt = make_pkt(1, data, checksum) (corrupt(rcvpkt) || udt_send(sndpkt) isACK(rcvpkt,0)) start_timer rdt send(data) rdt_rcv(rcvpkt)&& sndpkt = make_pkt(0, data, checksum) (corrupt(rcvpkt)|| udt_send(sndpkt) isACK(rcvpkt,1)) start_timer rdt_rcv(rcvpkt) Λ Λ Wait Wait for timeout for call Ofrom udt_send(sndpkt) ACK0 above start timer rdt rcv(rcvpkt) && notcorrupt(rcvpkt) rdt_rcv(rcvpkt) && isACK(rcvpkt,1) && notcorrupt(rcvpkt) && isACK(rcvpkt,0) stop_timer stop_timer Wait Wait for timeout for call 1 from udt send(sndpkt) ACK1 above rdt_rcv(rcvpkt) start_timer Λ rdt send(data) rdt rcv(rcvpkt)&& sndpkt = make_pkt(1, data, checksum) (corrupt(rcvpkt) || udt_send(sndpkt) isACK(rcvpkt,0)) start timer Λ

