Course No: 0907751
Course Name: Special Topics in Computer Engineering (Machine Learning)
Facebook group: https://www.facebook.com/groups/315669882258644/
Handouts:
Course Syllabus (pdf)
Slides:
- 1. Course Introduction (pptx)
- 2. Machine Learning Introduction (pdf)
- 3. Information about the term project (pdf)
- 4. Python Introduction (pdf)
- 5. Python Basics (pdf)
- 6. Important Python Packages (pdf)
- 7. End-to-End Machine Learning Project (pdf)
- 8. Classification (pdf)
- 9. Training Models (pdf)
- 10. Classical Techniques (pdf)
- 11. Neural Networks (pdf)
- 12. Artificial Neural Networks with Keras (pdf)
- 13. Deep Neural Networks (pdf)
- 14. Deep Computer Vision Using Convolutional Neural Networks (pdf)
- 15. Recurrent Neural Networks (pdf)
- 16. Reinforcement Learning (pdf)
- 17. Recommender Systems (pdf)
Videos:
- Python
- Python Introduction (YouTube) by M. Abdel-Majeed
- Python Basics (YouTube: Part 1, Part 2, Part 3) by G. Abandah
- Important Python Packages (YouTube) by M. Abdel-Majeed
- Training Models (YouTube)
- Classical Techniques 1: k-nearest neighbors (YouTube)
- Classical Techniques 2: Support Vector Machines (YouTube)
- Classical Techniques 3: Decision Trees (YouTube)
- Classical Techniques 4: Ensemble Learning and Random Forests (YouTube)
- Neural Networks (YouTube)
- Artificial Neural Networks with Keras (YouTube: Part 1, Part 2, Part 3)
- 13. Deep Neural Networks (YouTube: Part 1, Part 2, Part 3)
- 14. Deep Computer Vision Using Convolutional Neural Networks (YouTube: Part 1, Part 2, Part 3)
- 15. Recurrent Neural Networks (YouTube)
- 16. Reinforcement Learning (YouTube: Part 1, Part 2)
- 17. Recommender Systems (YouTube)
Solutions:
- Midterm exam (Cancelled due to COVID-19), Final Exam (pdf)
Grades: Project and final exam marks (pdf)
Last update on 3/6/2020