للإسم: (Spring 2024) <u>Midterm Exam</u> الإسم: رقم التسجيل: <u>Instructions</u>: Time 180 min. Open book and notes exam. No internet usage. Please answer all problems in the respective shaded rectangular spaces. There are three problems. Notice that this exam has 3 CSV files that you need to copy to the working directory of your Python project.

P1. The following Python code loads the **World Cities dataset** that has the longitude, latitude, and population of many world cities. Complete this code to achieve the following 4 requirements.

[10 marks]

```
import pandas as pd
import matplotlib.pyplot as plt
# Load the data
data = pd.read_csv('worldcities.csv')
```

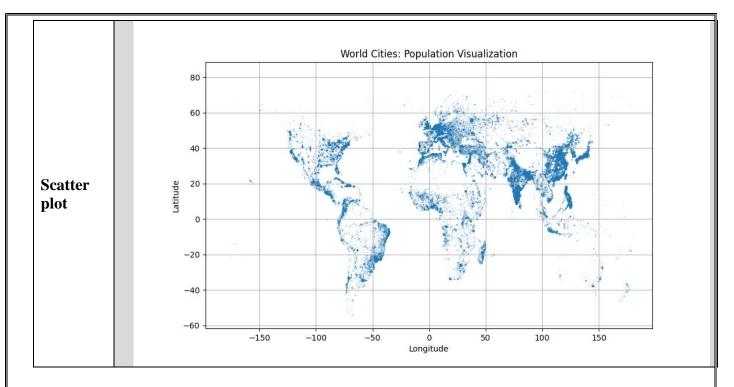
1. Find the number of cities that have missing values and drop the cities that have missing values.

	<pre>print(data.info())</pre>				
Code	<pre># Remove any rows with missing population or coordinates data = data.dropna(subset=['population', 'lat', 'lng'])</pre>				
Numbers of cities with missing values	212				

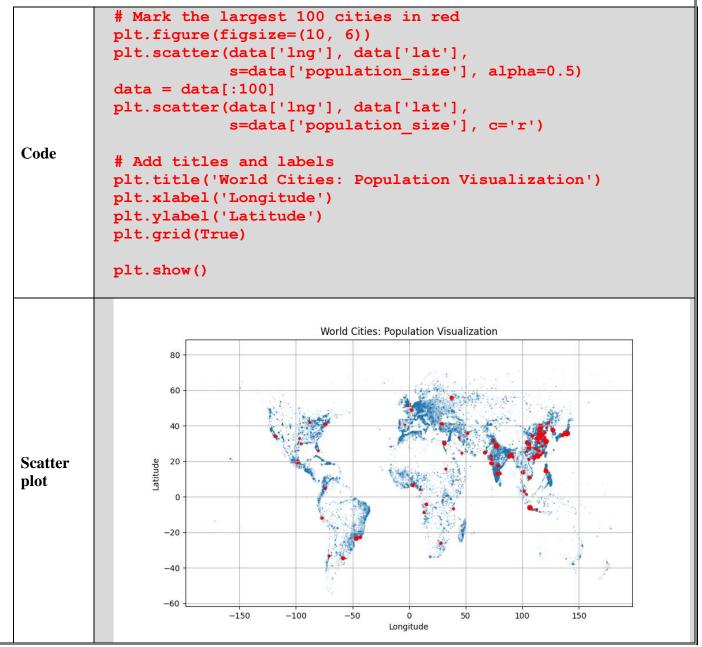
2. Convert the population to a suitable size for plotting.

Code	<pre>data['population_size'] = data['population'] / 1000000</pre>
Coue	

3. Create a scatter plot for this dataset to visualize the city locations and populations. The plot should have suitable title and x and y labels.



4. Plot another scatter plot as above but mark the largest 100 cities in red.



P2. The following Python code loads and selects a subset of the **Car MPG dataset**. The objective of this problem is to predict the miles per gallon (mpg) of a vehicle based on characteristics like displacement, horsepower, and weight. Complete this code to achieve the following 5 requirements.

[10 marks]

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# Load the dataset
data = pd.read_csv('auto-mpg.csv')
# Select a subset of columns
data = data[['mpg', 'displacement', 'horsepower', 'weight']]
```

1. Perform basic exploration to understand feature types and values.

Code	<pre>print(data.info()) print(data.describe())</pre>
Are there missing values?	Yes
Are there categorical Features?	No

2. Perform necessary data preprocessing such as dropping records with missing values and converting data types, if necessary.

```
# Drop rows with NaN values
Code data.dropna(inplace=True)
```

3. Split the dataset to features and response and two subsets: 80% train set and 20% test set.

	<pre># Split the data X = data[['displacement', 'horsepower', 'weight']]</pre>
Code	<pre>y = data['mpg'] X_train, X_test, y_train, y_test = train_test_split(X,</pre>

4. Normalize the features using the standard scaler and train the linear regressor on the train subset.

```
K # Initialize the StandardScaler
scaler = StandardScaler()
# Fit on training data and transform both subsets
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Initialize and train the model
model = LinearRegression()
model.fit(X_train_scaled, y_train)
```

5. Use root mean squared error (RMSE) to evaluate the model on the test subset.

	<pre># Make predictions y_pred = model.predict(X_test_scaled)</pre>
Code	<pre># Evaluate the model rmse = np.sqrt(mean_squared_error(y_test, y_pred)) print(f'Root Mean Squared Error: {rmse:.2f}')</pre>
RMSE	Root Mean Squared Error: 4.24

P3. The following Python code loads the **Titanic dataset**. The objective of this problem is to predict whether a passenger survived the Titanic disaster (binary classification: 0 for did not survive, 1 for survived). Complete this code to achieve the following 5 requirements.

[10 marks]

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
# Load the dataset
data = pd.read csv('titanic.csv')
```

1. Perform basic exploration to understand feature types and values.

Code	<pre>print(data.info())</pre>
Which features have missing	Age and Embarked
values?	
Which features are categorical?	Sex and Embarked

2. Perform necessary data preprocessing to drop records with missing categorical values and to fill missing numerical values by the median.

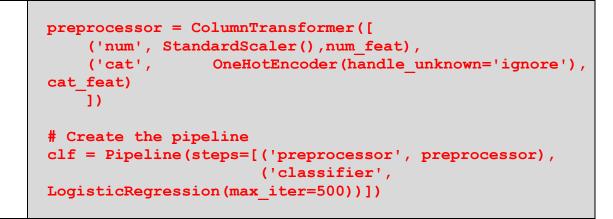
```
Code 
# Drop missing 'Embarked' and fill missing 'Age'
data.dropna(subset=['Embarked'], inplace=True)
data['Age'].fillna(data['Age'].median(), inplace=True)
```

3. Split the dataset to features and the class and two subsets: 80% train set and 20% test set.

```
# Prepare features and target
X = data[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch',
'Fare', 'Embarked']]
y = data['Survived']
Code
# Split the data
X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.2, random_state=42)
```

4. Create preprocessing and modeling pipelines. The numerical features should be normalized, the categorical features should be one-hot encoded, and the model should be the Logistic Regression classifier.

	<pre># Create preprocessing and modeling pipeline</pre>
Code	<pre>num_feat = ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare']</pre>
	<pre>cat_feat = ['Sex', 'Embarked']</pre>



5. Train the model on the train set and use the trained model to make predictions for the test set, then evaluate these predictions using the classification_report() function.

<pre># Train the model clf.fit(X_train, y_train) # Make predictions y_pred = clf.predict(X_test) # Evaluate the model print(classification_report(y_test, y_pred))</pre>						
		precision	recall	f1-score	support	
	0	0.85	0.77	0.81	109	
Classification	1	0.68	0.78	0.73	69	
Report	accuracy			0.78	178	
	macro avg			0.77		
	weighted avg	0.78	0.78	0.78	178	

<Good Luck>