
1 of 7

0907726 Applied Machine Learning (Spring 2024)
Midterm Exam

لاسم: ا KEY رقم التسجيل:

==

Instructions: Time 180 min. Open book and notes exam. No internet usage. Please answer all problems in

the respective shaded rectangular spaces. There are three problems. Notice that this exam has 3 CSV files

that you need to copy to the working directory of your Python project.

==

P1. The following Python code loads the World Cities dataset that has the longitude, latitude, and

population of many world cities. Complete this code to achieve the following 4 requirements.

[10 marks]

import pandas as pd

import matplotlib.pyplot as plt

Load the data

data = pd.read_csv('worldcities.csv')

1. Find the number of cities that have missing values and drop the cities that have missing values.

Code

print(data.info())

Remove any rows with missing population or coordinates

data = data.dropna(subset=['population', 'lat', 'lng'])

Numbers

of cities

with

missing

values

212

2. Convert the population to a suitable size for plotting.

Code
data['population_size'] = data['population'] / 1000000

3. Create a scatter plot for this dataset to visualize the city locations and populations. The plot should

have suitable title and x and y labels.

Code

Create the scatter plot

plt.figure(figsize=(10, 6))

plt.scatter(data['lng'], data['lat'],

 s=data['population_size'], alpha=0.5)

Add titles and labels

plt.title('World Cities: Population Visualization')

plt.xlabel('Longitude')

plt.ylabel('Latitude')

plt.grid(True)

plt.show()

2 of 7

Scatter

plot

4. Plot another scatter plot as above but mark the largest 100 cities in red.

Code

Mark the largest 100 cities in red

plt.figure(figsize=(10, 6))

plt.scatter(data['lng'], data['lat'],

 s=data['population_size'], alpha=0.5)

data = data[:100]

plt.scatter(data['lng'], data['lat'],

 s=data['population_size'], c='r')

Add titles and labels

plt.title('World Cities: Population Visualization')

plt.xlabel('Longitude')

plt.ylabel('Latitude')

plt.grid(True)

plt.show()

Scatter

plot

3 of 7

P2. The following Python code loads and selects a subset of the Car MPG dataset. The objective of this

problem is to predict the miles per gallon (mpg) of a vehicle based on characteristics like displacement,

horsepower, and weight. Complete this code to achieve the following 5 requirements.

[10 marks]

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error

Load the dataset

data = pd.read_csv('auto-mpg.csv')

Select a subset of columns

data = data[['mpg', 'displacement', 'horsepower', 'weight']]

1. Perform basic exploration to understand feature types and values.

Code

print(data.info())

print(data.describe())

Are there

missing

values?

Yes

Are there

categorical

Features?

No

2. Perform necessary data preprocessing such as dropping records with missing values and converting

data types, if necessary.

Code

Drop rows with NaN values

data.dropna(inplace=True)

3. Split the dataset to features and response and two subsets: 80% train set and 20% test set.

Code

Split the data

X = data[['displacement', 'horsepower', 'weight']]

y = data['mpg']

X_train, X_test, y_train, y_test = train_test_split(X,

 y, test_size=0.2, random_state=42))

4. Normalize the features using the standard scaler and train the linear regressor on the train subset.

Code

Initialize the StandardScaler

scaler = StandardScaler()

Fit on training data and transform both subsets

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

Initialize and train the model

model = LinearRegression()

model.fit(X_train_scaled, y_train)

4 of 7

5. Use root mean squared error (RMSE) to evaluate the model on the test subset.

Code

Make predictions

y_pred = model.predict(X_test_scaled)

Evaluate the model

rmse = np.sqrt(mean_squared_error(y_test, y_pred))

print(f'Root Mean Squared Error: {rmse:.2f}')

RMSE
Root Mean Squared Error: 4.24

5 of 7

 P3. The following Python code loads the Titanic dataset. The objective of this problem is to predict

whether a passenger survived the Titanic disaster (binary classification: 0 for did not survive, 1 for

survived). Complete this code to achieve the following 5 requirements.

[10 marks]

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.preprocessing import OneHotEncoder

from sklearn.compose import ColumnTransformer

from sklearn.pipeline import Pipeline

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report

Load the dataset

data = pd.read_csv('titanic.csv')

1. Perform basic exploration to understand feature types and values.

Code
print(data.info())

Which

features

have

missing

values?

Age and Embarked

Which

features are

categorical?

Sex and Embarked

2. Perform necessary data preprocessing to drop records with missing categorical values and to fill

missing numerical values by the median.

Code

Drop missing 'Embarked' and fill missing 'Age'

data.dropna(subset=['Embarked'], inplace=True)

data['Age'].fillna(data['Age'].median(), inplace=True)

3. Split the dataset to features and the class and two subsets: 80% train set and 20% test set.

Code

Prepare features and target

X = data[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch',

'Fare', 'Embarked']]

y = data['Survived']

Split the data

X_train, X_test, y_train, y_test = train_test_split(

 X, y, test_size=0.2, random_state=42)

4. Create preprocessing and modeling pipelines. The numerical features should be normalized, the

categorical features should be one-hot encoded, and the model should be the Logistic Regression

classifier.

Code

Create preprocessing and modeling pipeline

num_feat = ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare']

cat_feat = ['Sex', 'Embarked']

6 of 7

preprocessor = ColumnTransformer([

 ('num', StandardScaler(),num_feat),

 ('cat', OneHotEncoder(handle_unknown='ignore'),

cat_feat)

])

Create the pipeline

clf = Pipeline(steps=[('preprocessor', preprocessor),

 ('classifier',

LogisticRegression(max_iter=500))])

5. Train the model on the train set and use the trained model to make predictions for the test set, then

evaluate these predictions using the classification_report() function.

Code

Train the model

clf.fit(X_train, y_train)

Make predictions

y_pred = clf.predict(X_test)

Evaluate the model

print(classification_report(y_test, y_pred))

Classification

Report

 precision recall f1-score support

 0 0.85 0.77 0.81 109

 1 0.68 0.78 0.73 69

 accuracy 0.78 178

 macro avg 0.77 0.78 0.77 178

weighted avg 0.78 0.78 0.78 178

7 of 7

<Good Luck>

