0907335 Computer Organization (Fall 2012) <u>Midterm Exam</u>					
شعبة: ۱	رقم ال		رقم التسلسل:	الأسم:	
		1	ok and notes exam. No electronics. Ple to the space provided. No questions ar <i><good luck=""></good></i>	1	
released th	hat requi	res only 0.5 as man	a runs 10 seconds on a desktop processo y instructions as the old compiler. Unfor formance increase of this application us	tunately, it increases the	
Old Time		1 * CPI _{old} * T _{old} econds			
New Time	= 0.5 *	* IC _{old} * 1.2 * CPI ₀ * 1.2 * 10	d * T _{old}		
Speedup	= 6 sec = 10 /	conds 6 = 1.67		(2 marks) (2 marks)	
The new cor	npiler is	(1.67-1)*100%= <u>6</u>	<u>1%</u> faster than the old compiler	(1 marks)	
Q2. At the er registers.	nd of exe	cuting the followin	g MIPS instruction sequence, specify the	e contents of the following	
	addi	\$e0 \$zoro	5 # s = 6	<5 marks>	
			$-3 = v_0 = -3 = -xfffff$	ffd	
			ip # not taken		
	sll	\$s2, \$s1, 1	# s2 = 3 << 1 = 6		
Skip					
	or	\$v0, \$v0, \$s	2 # v0 = 0xfffffffd o # = -1	r 6 = 0xffffffff	
Register \$s0 =6			(1 mark)		
Register \$v0 = -1			(2 mark)	(2 mark)	
Register \$s1 =3			(1 mark)	(1 mark)	
Register \$	ss2 =	_6	(1 mark)		

Q3. Convert the following C function to MIPS leaf procedure. The first argument is the starting address of an array of integers A[] and is in register \$a0. The second argument is the array size and is in register \$a1. The return value is in register \$v0.

<10 marks>

```
int find_array_sum (int* A, int n) {
   int i, sum=0;
   for (i=0; i<n; i=i+1)</pre>
      sum = sum + A[i];
   return sum;
}
find_array_sum:
   add $t0, $zero, $zero
                                # i = 0
   add $t1, $zero, $zero
                                 \# sum = 0
Loop:
   slt $t2, $t0, $a1
                                 # is i < n ?
   beq $t2, $zero, Exit
                                 # branch if not
   sll $t3, $t0, 2
   add $t3, $t3, $a0
   lw
        $t4, 0($t3)
                                 # load A[i]
   add $t1, $t1, $t4
                                 \# sum = sum + A[i]
   addi $t0, $t0, 1
   j
        Loop
Exit:
   add $v0, $t1, $zero
        $ra
   jr
```

Q4. It is required to design a 4-bit ALU that can perform the operations specified in the following table. This ALU has the interface specified to the right.

Operation	Function
00	sll
01	and
10	add

a) Design a one-bit ALU slice that performs these three operations. Use full adder, multiplexer, and basic logic gates as your building blocks.

b) Connect four slices to get the required 4-bit ALU.

