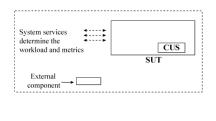
The Art of Workload Selection

Overview

- Services Exercised
 - > Example: Timesharing Systems
 - > Example: Networks
 - > Example: Magnetic Tape Backup System
- Level of Detail
- Representativeness
- Timeliness
- Other Considerations in Workload Selection

-1

The Art of Workload Selection


Considerations:

- Services exercised
- □ Level of detail
- □ Loading level
- ☐ Impact of other components
- Timeliness

5-3

Services Exercised

- □ SUT = System Under Test
- □ CUS = Component Under Study

5-4

Services Exercised (Cont)

- □ Do not confuse SUT w CUS
- Metrics depend upon SUT: MIPS is ok for two CPUs but not for two timesharing systems.
- Workload: depends upon the system.
- Examples:
 - > CPU: instructions
 - > System: Transactions
 - > Transactions not good for CPU and vice versa
 - > Two systems identical except for CPU
 - □ Comparing Systems: Use transactions
 - □ Comparing CPUs: Use instructions
 - > Multiple services: Exercise as complete a set of services as possible.

Transactions

Applications

OPERATION OF COMMANDAY Service

Operating system

OPERATION OF COMMANDAY SERVICE

OPERATION OF COMMANDAY SERVICE

OPERATION OF COMMANDAY STATEMENT OF COMMA

5-5

5-6

Example: Networks

Level of Detail

- Most frequent request:
 - > Examples: Addition Instruction, Debit-Credit, Kernels
 - > Valid if one service is much more frequent than others
- □ Frequency of request types
 - > Examples: Instruction mixes
 - > Context sensitivity) Use set of services
 - > History-sensitive mechanisms (caching)) Context sensitivity
- Time-stamped sequence of requests
 - > May be too detailed
 - > Not convenient for analytical modeling
 - > May require exact reproduction of component behavior

5-8

Level of Detail (Cont)

- Average resource demand
 - > Used for analytical modeling
 - > Grouped similar services in classes
- Distribution of resource demands
 - > Used if variance is large
 - > Used if the distribution impacts the performance
- Workload used in simulation and analytical modeling:
 - > Non executable: Used in analytical/simulation modeling
 - > Executable workload: can be executed directly on a system

Representativeness

The test workload and real workload should have the same:

- □ Elapsed Time
- Resource Demands
- □ Resource Usage Profile: Sequence and the amounts in which different resources are used.

5-10

Timeliness

- □ Users are a moving target.
- New systems ⇒ new workloads
- □ Users tend to optimize the demand.
- □ Fast multiplication ⇒ Higher frequency of multiplication instructions.
- Important to monitor user behavior on an ongoing basis.

Other Considerations in Workload Selection

- □ Loading Level: A workload may exercise a system to its:
 - > Full capacity (best case)
 - > Beyond its capacity (worst case)
 - > At the load level observed in real workload (typical case).
 - ➤ For procurement purposes ⇒ Typical
 - > For design ⇒ best to worst, all cases
- Impact of External Components:
 - > Do not use a workload that makes external component a bottleneck ⇒ All alternatives in the system give equally good performance.
- Repeatability

5-11

5-12

- Services exercised determine the workload
- Level of detail of the workload should match that of the model being used
- ☐ Workload should be representative of the real systems usage in recent past
- □ Loading level, impact of external components, and repeatability or other criteria in workload selection

5-13