Course No: 0907726
Course Name: Applied Machine Learning
Microsoft Team: Link
Handouts:
Course Syllabus (pdf)
Slides:
- Course Introduction (pdf)
- Python
- Python Introduction (pdf)
- Python Basics (pdf)
- Important Python Packages (pdf)
- Advanced Python (pdf)
- NumPy (pdf)
- ML
- Machine Learning Introduction (pdf) UPDATED
- End-to-End Machine Learning Project (pdf) UPDATED
- Information about the term project (pdf) UPDATED
- Classification (pdf) UPDATED
- Training Models and Regression (pdf) UPDATED
- Classical Techniques (pdf) UPDATED
- Unsupervised Learning and Clustering (pdf) UPDATED
- Neural Networks (pdf) UPDATED
- Artificial Neural Networks with Keras (pdf) UPDATED
- Deep Neural Networks (pdf) UPDATED
- Deep Computer Vision Using Convolutional Neural Networks (pdf) UPDATED
- Recurrent Neural Networks (pdf) UPDATED
- Reinforcement Learning (pdf) UPDATED
- Recommender Systems (pdf) UPDATED
Videos:
- Python
- Python Introduction (YouTube)
- Python Basics (YouTube)
- Important Python Packages (YouTube)
- Advance Python (YouTube)
- Training Models (YouTube)
- Classical Techniques 1: k-nearest neighbors (YouTube)
- Classical Techniques 2: Support Vector Machines (YouTube)
- Classical Techniques 3: Decision Trees (YouTube)
- Classical Techniques 4: Ensemble Learning and Random Forests (YouTube)
- Neural Networks (YouTube)
- Artificial Neural Networks with Keras (YouTube: Part 1, Part 2, Part 3)
- 13. Deep Neural Networks (YouTube: Part 1, Part 2, Part 3)
- 14. Deep Computer Vision Using Convolutional Neural Networks (YouTube: Part 1, Part 2, Part 3)
- 15. Recurrent Neural Networks (YouTube)
- 16. Reinforcement Learning (YouTube: Part 1, Part 2)
- 17. Recommender Systems (YouTube)
Homework:
- HW1: Toolkits (pdf)
- HW2: Basic Python Programming (pdf)
- HW3: Files (pdf, file1.txt)
- HW4: NumPy (pdf)
Solutions:
- Midterm exam (TBA), Final Exam (TBA)
Grades: Project and final exam marks (TBA)
Last update on 2/1/2023